• Title/Summary/Keyword: 해상풍력터빈 하부구조물

Search Result 7, Processing Time 0.024 seconds

Offshore Wind Power, Review (해상풍력(Offshore Wind Power) 기술동향)

  • Nah, Do-Baek;Shin, Hyo-Soon;Nah, Duck-Joo
    • Journal of Energy Engineering
    • /
    • v.20 no.2
    • /
    • pp.143-153
    • /
    • 2011
  • Offshore wind power(OWP) is one of the most promising renewable energy and gives higher output than onland one due to stronger and consistent wind in offshore. it offsets shortcoming of noise, spatial limit and less affects scenery, and can be built in larger size. Korea has plenty of offshore wind resources as it is surrounded by the sea in three directions. This review describes recent progress in offshore wind turbine and substructure technology. Market trend in local and overseas, Number of papers published and patents registered are analysed.

Reliability Analysis of Offshore Wind Turbines Considering Soil-Pile Interaction and Scouring Effect (지반과 말뚝의 상호작용 및 세굴현상을 고려한 해상풍력터빈의 신뢰성 해석)

  • Yi, Jin-Hak;Kim, Sun-Bin;Yoon, Gil-Lim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.4
    • /
    • pp.222-231
    • /
    • 2016
  • Multi-member lattice-type structures including jackets and tripods are being considered as good alternatives to monopile foundations for relatively deep water of 25-50 m of water depth owing to their technical and economic feasibility. In this study, the reliability analysis of bottom-fixed offshore wind turbines with monopile and/or multi-member lattice-type foundations is carried out and the sensitivities of random variables such as material properties, external wind loadings and scouring depth are compared with respect to different types of foundations. Numerical analysis of the NREL 5 MW wind turbine supported by monopile, tripod and jacket substructures shows that the uncertainties of soil properties affect the reliability index more significantly for the monopile-supported OWTs while the reliability index is not so sensitive to the material properties in the cases of tripod- and jacket-supported OWTs. In conclusion, the reliability analysis can be preliminarily carried out without considering soil-pile-interaction in the cases of tripod- and jacket-supported OWTs while it is very important to use the well-measured soil properties for reliable design of monopile-supported OWTs.

The study on substructure design and analysis for 5MW offshore wind turbine (5MW급 해상풍력 하부구조물 설계 및 해석에 관한 연구)

  • Sun, Min-Young;Lee, Sung-Bum;Lee, Ki-Yeol;Moon, Byung-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1075-1080
    • /
    • 2014
  • This study aims at dedicating to relevant technology fields by suggesting design methods of structures and estimating their safety in relation to substructure for offshore wind power requiring high safety to various environment conditions. Especially, with respect to 5MW Offshore Wind Power System, this study will provide information about major wind directions and duration in combination with the developing wave climate at the test field. Therefore, connections between wind fields and approaching wave trains will be estimated and their intensity, direction and time shift will be pointed out. Furthermore, the local pressure distribution of breaking waves will be investigated by physical and numerical modeling. The currently applied structural and fatigue assessment of support structures for offshore wind energy converters is based on common design rules. Normally, constructions in structural engineering are treated as limited, single structures. This means that varying aspects of manufacturing are considered by high safety factors.

Topology Optimization of Offshore Wind-Power Turbine Substructure Using 3D Solid-Element Model (3 차원 고체요소모델을 활용한 해상풍력터빈 하부구조의 위상최적화)

  • Kim, Won Cheol;Chung, Tae Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.3
    • /
    • pp.309-314
    • /
    • 2014
  • The structural layout of mechanical and civil structures is commonly obtained using conventional methods. For example, the shape of structures such as electric transmission towers and offshore substructures can be generated systematically. However, with rapid advancements in computer graphic technology, advanced structural analyses and optimum design technologies have been implemented. In this study, the structural shape of a jacket substructure for an offshore wind turbine is investigated using a topology optimization technique. The structure is subjected to multiple loads that are intended to simulate the loading conditions during actual operation. The optimization objective function is defined as one that ensures compliance of the structure under the given boundary conditions. Optimization is carried out with constraints on the natural frequency in addition to the volume constraint. The result of a first step model provides quick insights into the optimum layout for the second step structure. Subsequently, a 3D model in the form of the frustum of a quadrilateral pyramid is developed through topology optimization.

Baseline Model Updating and Damage Estimation Techniques for Tripod Substructure (트라이포드 하부구조물의 기저모델개선 및 결함추정 기법)

  • Lee, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.218-226
    • /
    • 2020
  • An experimental study was conducted on baseline model updating and damage estimation techniques for the health monitoring of offshore wind turbine tripod substructures. First, a procedure for substructure health monitoring was proposed. An initial baseline model for a scaled model of a tripod substructure was established. A baseline model was updated based on the natural frequencies and the mode shapes measured in the healthy state. A training pattern was then generated using the updated baseline model, and the damage was estimated by inputting the modal parameters measured in the damaged state into the trained neural network. The baseline model could be updated reasonably using the effective fixity model. The damage tests were performed, and the damage locations could be estimated reasonably. In addition, the estimated damage severity also increased as the actual damage severity increased. On the other hand, when the damage severity was relatively small, the corresponding damage location was detected, but it was more difficult to identify than the other cases. Further studies on small damage estimation and stiffness reduction quantification will be needed before the presented method can be used effectively for the health monitoring of tripod substructures.

Automatic Mesh Generation Method on The Offshore Wind Tower (해상 풍력 타워에 관한 자동요소 생성법)

  • Kim, Namhyeong;Kang, Hyunjin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.2
    • /
    • pp.130-137
    • /
    • 2013
  • The more accurate numerical analysis is needed, The more important to arrange nodes and elements properly on the structures wanted to be analyzed. In this study, automatic mesh generation method is developed for triangular mesh modeling in wind tower and substructure formed in circular sections especially, which have structural and economical benefits in shallow water area. It can consider variety conditions by inputting the detail data such as height and types. Also, this study includes the comparison and verification with the mesh generation by Delaunay triangular technique on 3 dimensional space and the examples of mesh generation for proposed tower and substructure. The result of this study will be widely applied to analyze the existing and proposed models for wind turbines.

Analysis Program for Offshore Wind Energy Substructures Embedded in AutoCAD (오토캐드 환경에서 구현한 해상풍력 지지구조 해석 프로그램)

  • James Ban;Chuan Ma;Sorrasak Vachirapanyakun;Pasin Plodpradit;Goangseup Zi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.33-44
    • /
    • 2023
  • Wind power is one of the most efficient and reliable energy sources in the transition to a low-carbon society. In particular, offshore wind power provides a high-quality and stable wind resource compared to onshore wind power while both present a higher installed capacity than other renewables. In this paper, we present our new program, the X-WIND program well suitable for the assessment of the substructure of offshore wind turbines. We have developed this program to increase the usability of analysis programs for offshore wind energy substructures by addressing the shortcomings of existing programs. Unlike the existing programs which cannot solely perform the substructure analyses or lack pre-post processors, our X-WIND program can complete the assessment analysis for the offshore wind turbines alone. The X-WIND program is embedded in AutoCAD so that both design and analysis are performed on a single platform. This also performs static and dynamic analysis for wind, wave, and current loads, essential for offshore wind power structures, and includes pre/post processors for designs, mesh developments, graph plotting, and code checking. With this expertise, our program enhances the usability of analysis programs for offshore wind energy substructures, promoting convenience and efficiency.