• Title/Summary/Keyword: 해상재해

Search Result 152, Processing Time 0.017 seconds

A Study on Air Resistance and Greenhouse Gas Emissions of an Ocean Leisure Planning Boat (해양레저용 활주형선의 공기저항 및 온실 가스 배출에 대한 연구)

  • Kim, Y.S.;Hwang, S.K.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.3
    • /
    • pp.202-210
    • /
    • 2013
  • As incomes increase, interest in ocean leisure picks up. As a result, a lot of research and developments on hull form design and production of planing boats, mostly used for ocean leisure, are needed. Analysis in researches on resistance of planing boats shows that resistance characteristic of planing boats is different from resistance characteristic of general boats because the former is fast, and its wetted surface is very small. Using Savitsky formula widely used in the calculation of effective horse power in shipbuildingyards, and propulsion system and engine manufacturers, this study calculated total resistance of a research planing boat. Then it analyzed the flow characteristics of the planing boat through theoretical analysis and wind tunnel experiment, and computed air resistance and lift force by changes of speed and trim angle. It also compared and analyzed result of theoretical analysis and experiment of the ratio of air resistance to total resistance under variations of velocity and trim angle. When the study is used to estimate more accurate effective horse power, it is expected to remedy abuses of unnecessarily installing high-powered engine. As nature disasters due to abnormal changes of weather increase, interest in greenhouse gas grows. International Maritime Organization (IMO) legislated Energy Efficiency Design Index (EEDI) and Energy Efficiency Operational Indicator (EEOI) to reduce ship greenhouse gas emissions. But this index will be applied to over 400 tons ships, small ships, emitting more greenhouse gases than larege ships per unit power, will dodge the regulations. Thus, this study indicated a problem by calculating greenhouse gas emissions of an ocean leisure planning boat (a small ship), and suggested the need for EEDI of small ships.

Extraction of Water Body Area using Micro Satellite SAR: A Case Study of the Daecheng Dam of South korea (초소형 SAR 위성을 활용한 수체면적 추출: 대청댐 유역 대상)

  • PARK, Jongsoo;KANG, Ki-Mook;HWANG, Eui-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.4
    • /
    • pp.41-54
    • /
    • 2021
  • It is very essential to estimate the water body area using remote exploration for water resource management, analysis and prediction of water disaster damage. Hydrophysical detection using satellites has been mainly performed on large satellites equipped with optical and SAR sensors. However, due to the long repeat cycle, there is a limitation that timely utilization is impossible in the event of a disaster/disaster. With the recent active development of Micro satellites, it has served as an opportunity to overcome the limitations of time resolution centered on existing large satellites. The Micro satellites currently in active operation are ICEYE in Finland and Capella satellites in the United States, and are operated in the form of clusters for earth observation purposes. Due to clustering operation, it has a short revisit cycle and high resolution and has the advantage of being able to observe regardless of weather or day and night with the SAR sensor mounted. In this study, the operation status and characteristics of micro satellites were described, and the water area estimation technology optimized for micro SAR satellite images was applied to the Daecheong Dam basin on the Korean Peninsula. In addition, accuracy verification was performed based on the reference value of the water generated from the optical satellite Sentinel-2 satellite as a reference. In the case of the Capella satellite, the smallest difference in area was shown, and it was confirmed that all three images showed high correlation. Through the results of this study, it was confirmed that despite the low NESZ of Micro satellites, it is possible to estimate the water area, and it is believed that the limitations of water resource/water disaster monitoring using existing large SAR satellites can be overcome.