• Title/Summary/Keyword: 해상도(resolution)

Search Result 2,523, Processing Time 0.028 seconds

Assessment of Bone Metastasis using Nuclear Medicine Imaging in Breast Cancer : Comparison between PET/CT and Bone Scan (유방암 환자에서 골전이에 대한 핵의학적 평가)

  • Cho, Dae-Hyoun;Ahn, Byeong-Cheol;Kang, Sung-Min;Seo, Ji-Hyoung;Bae, Jin-Ho;Lee, Sang-Woo;Jeong, Jin-Hyang;Yoo, Jeong-Soo;Park, Ho-Young;Lee, Jae-Tae
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.1
    • /
    • pp.30-41
    • /
    • 2007
  • Purpose: Bone metastasis in breast cancer patients are usually assessed by conventional Tc-99m methylene diphosphonate whole-body bone scan, which has a high sensitivity but a poor specificity. However, positron emission tomography with $^{18}F-2-deoxyglucose$ (FDG-PET) can offer superior spatial resolution and improved specificity. FDG-PET/CT can offer more information to assess bone metastasis than PET alone, by giving a anatomical information of non-enhanced CT image. We attempted to evaluate the usefulness of FDG-PET/CT for detecting bone metastasis in breast cancer and to compare FDG-PET/CT results with bone scan findings. Materials and Methods: The study group comprised 157 women patients (range: $28{\sim}78$ years old, $mean{\pm}SD=49.5{\pm}8.5$) with biopsy-proven breast cancer who underwent bone scan and FDG-PET/CT within 1 week interval. The final diagnosis of bone metastasis was established by histopathological findings, radiological correlation, or clinical follow-up. Bone scan was acquired over 4 hours after administration of 740 MBq Tc-99m MDP. Bone scan image was interpreted as normal, low, intermediate or high probability for osseous metastasis. FDG PET/CT was performed after 6 hours fasting. 370 MBq F-18 FDG was administered intravenously 1 hour before imaging. PET data was obtained by 3D mode and CT data, used as transmission correction database, was acquired during shallow respiration. PET images were evaluated by visual interpretation, and quantification of FDG accumulation in bone lesion was performed by maximal SUV(SUVmax) and relative SUV(SUVrel). Results: Six patients(4.4%) showed metastatic bone lesions. Four(66.6%) of 6 patients with osseous metastasis was detected by bone scan and all 6 patients(100%) were detected by PET/CT. A total of 135 bone lesions found on either FDG-PET or bone scan were consist of 108 osseous metastatic lesion and 27 benign bone lesions. Osseous metastatic lesion had higher SUVmax and SUVrel compared to benign bone lesion($4.79{\pm}3.32$ vs $1.45{\pm}0.44$, p=0.000, $3.08{\pm}2.85$ vs $0.30{\pm}0.43$, p=0.000). Among 108 osseous metastatic lesions, 76 lesions showed as abnormal uptake on bone scan, and 76 lesions also showed as increased FDG uptake on PET/CT scan. There was good agreement between FDG uptake and abnormal bone scan finding (Kendall tau-b : 0.689, p=0.000). Lesion showed increased bone tracer uptake had higher SUVmax and SUVrel compared to lesion showed no abnormal bone scan finding ($6.03{\pm}3.12$ vs $1.09{\pm}1.49$, p=0.000, $4.76{\pm}3.31$ vs $1.29{\pm}0.92$, p=0.000). The order of frequency of osseous metastatic site was vertebra, pelvis, rib, skull, sternum, scapula, femur, clavicle, and humerus. Metastatic lesion on skull had highest SUVmax and metastatic lesion on rib had highest SUVrel. Osteosclerotic metastatic lesion had lowest SUVmax and SUVrel. Conclusion: These results suggest that FDG-PET/CT is more sensitive to detect breast cancer patients with osseous metastasis. CT scan must be reviewed cautiously skeleton with bone window, because osteosclerotic metastatic lesion did not showed abnormal FDG accumulation frequently.

A Study on the Determination of Scan Speed in Whole Body Bone Scan Applying Oncoflash (Oncoflash를 적용한 전신 뼈 영상 검사의 스캔 속도 결정에 관한 연구)

  • Yang, Gwang-Gil;Jung, Woo-Young
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.3
    • /
    • pp.56-60
    • /
    • 2009
  • Purpose: The various studies and efforts to develop program are in progress in the field of nuclear medicine for the purpose of reducing scan time. The Oncoflash is one of the programs used in whole body bone scan which allows to maintain the image quality while to reduce scan time. When Those applications are used in clinical setting, both the image quality and reduction of scan time should be considered, therefore, the purpose of this study was to determine the criteria for proper scan speed. Materials and Methods: The subjects of this study were the patients who underwent whole body bone scan at the departments of nuclear medicine in the Asan Medical Center located in Seoul from 1st to 10th, July, 2008. The whole body bone images obtained in the scan speed of 30cm/min were classified by the total counts into under 800 K, and over 800 K, 900 K, 1,000 K, 1,500 K, and 2,000 K. The image quality were assessed qualitatively and the percentages of those of 1,000K and under of total counts were calculated. The FWHM before and after applying the Oncoflash were analyzed using images obtained in $^{99m}Tc$ Flood and 4-Quadrant bar phantom in order to compare the resolution according to the amount of total counts by the application of the Oncoflash. Considering the counts of the whole body bone scan, the dosed 2~5 mCi were used. 152 patients underwent the measurement in which the counts of Patient Postioning Monitor (PPM) were measured with including head and the parts of chest which the starting point of whole body bone scan from 7th to 26th, August, 2008. The correlations with total counts obtained in the scan speed of 30cm/min among them were analyzed (The exclusion criteria were after over six hours of applying isotopes or low amount of doses). Results: The percentage of the whole body bone image which has the geometric average of total counts of under 1,000K among them obtained in the scan speed of 30cm/min were 17.6%(n=58) of 329 patients. The qualitative analysis of the image groups according to the whole body counts showed that the images of under 1,000K were assessed to have coarse particles and increased noises. The analysis on the FWHM of the images before and after applying the Oncoflash showed that, in the case of PPM counts of under 3.6 K, FWHM values after applying the Oncoflash were higher than that before applying the Oncoflash, whereas, in the case of that of over 3.6 K, the FWHM after applying the Oncoflash were not higher than that before applying the Oncoflash. The average of total counts at 2.5~3.0 K, 3.1~3.5 K, 3.6~4.0 k, 4.1~4.5 K, 4.6~5.0 K, 5.1~6.0 K, 6.1~7.0 K, and 7.1 K over (in PPM) were $965{\pm}173\;K$, $1084{\pm}154\;K$, $1242{\pm}186\;K$, $1359{\pm}170\;K$, $1405{\pm}184\;K$, $1640{\pm}376\;K$, $1,771{\pm}324\;K$, and $1,972{\pm}385\;K$, respectively and the correlations between the counts in PPM and the total counts of image obtained in the scan speed of 30 cm/min demonstrated strong correlation (r=.775, p<.01). Conclusions: In the case of PPM coefficient over 3.6 K, the image quality obtained in the scan speed of 30cm/min and after applying the Oncoflash was similar to that obtained in the scan speed of 15 cm/min. In the case of total counts over 1,000 K, it is expected to reduce scan time without any damage on the image quality. In the case of total counts under 1,000 K, however, the image quality were decreased even though the Oncoflash is applied, so it is recommended to perform the re-image in the scan speed of 15 cm/min.

  • PDF

Study of East Asia Climate Change for the Last Glacial Maximum Using Numerical Model (수치모델을 이용한 Last Glacial Maximum의 동아시아 기후변화 연구)

  • Kim, Seong-Joong;Park, Yoo-Min;Lee, Bang-Yong;Choi, Tae-Jin;Yoon, Young-Jun;Suk, Bong-Chool
    • The Korean Journal of Quaternary Research
    • /
    • v.20 no.1 s.26
    • /
    • pp.51-66
    • /
    • 2006
  • The climate of the last glacial maximum (LGM) in northeast Asia is simulated with an atmospheric general circulation model of NCAR CCM3 at spectral truncation of T170, corresponding to a grid cell size of roughly 75 km. Modern climate is simulated by a prescribed sea surface temperature and sea ice provided from NCAR, and contemporary atmospheric CO2, topography, and orbital parameters, while LGM simulation was forced with the reconstructed CLIMAP sea surface temperatures, sea ice distribution, ice sheet topography, reduced $CO_2$, and orbital parameters. Under LGM conditions, surface temperature is markedly reduced in winter by more than $18^{\circ}C$ in the Korean west sea and continental margin of the Korean east sea, where the ocean exposed to land in the LGM, whereas in these areas surface temperature is warmer than present in summer by up to $2^{\circ}C$. This is due to the difference in heat capacity between ocean and land. Overall, in the LGM surface is cooled by $4{\sim}6^{\circ}C$ in northeast Asia land and by $7.1^{\circ}C$ in the entire area. An analysis of surface heat fluxes show that the surface cooling is due to the increase in outgoing longwave radiation associated with the reduced $CO_2$ concentration. The reduction in surface temperature leads to a weakening of the hydrological cycle. In winter, precipitation decreases largely in the southeastern part of Asia by about $1{\sim}4\;mm/day$, while in summer a larger reduction is found over China. Overall, annual-mean precipitation decreases by about 50% in the LGM. In northeast Asia, evaporation is also overall reduced in the LGM, but the reduction of precipitation is larger, eventually leading to a drier climate. The drier LGM climate simulated in this study is consistent with proxy evidence compiled in other areas. Overall, the high-resolution model captures the climate features reasonably well under global domain.

  • PDF