• Title/Summary/Keyword: 해사안전

Search Result 540, Processing Time 0.023 seconds

Experimental and Numerical Study of Berthing and Unberthing of LNG-Bunkering Vessels (실험 및 수치해석을 통한 LNG 벙커링 선박들의 이접안 안정성 평가 연구)

  • Jung, Sung-Jun;Oh, Seung-Hoon;Jung, Dong-Woo;Kim, Yun-Ho;Jung, Dong-Ho
    • Journal of Navigation and Port Research
    • /
    • v.44 no.6
    • /
    • pp.439-446
    • /
    • 2020
  • The IMO has adopted emission standards through Annex VI of the International Convention for the Prevention of Pollution from Ships (MARPOL) that strictly prohibit the use of bunker C oil for vessels. In this study, we have adopted the turret-moored Floating LNG-Bunkering Terminal (FLBT) which is designed to receive the LNG from LNGCs and transfer it to LNG-bunkering shuttles in side-by-side moored condition. Numerical analyses were carried out using the high-order boundary-element method for four vessels at various relative distances. Mean wave drift forces were compared in an operational sea state. A model test was performed in the ocean engineering basin at the Korea Research Institute of Ships & Ocean Engineering (KRISO) to verify the safety of the berthing/unberthing operation. In the model test, a jig was designed to simulate tug boats pushing or pulling the bunkering vessels, so that the friction force of the g operation was not affected. Safety depended on the environmental direction, with more stable operation possible if the heading-control function of FLBT is applied to avoid beam-sea conditions.

A Fundamental Study on Mode of Operation for Maritime Autonomous Surface Ship(MASS) - Based on review of IMCA M 220

  • Jeong-Min Kim;HyeRi Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.5
    • /
    • pp.163-170
    • /
    • 2023
  • As the development of the 4th industrial revolution in the maritime industry has accelerated, the technical development and progress of maritime autonomous surface ship(MASS), and the development of international regulations have been accelerated. In particular, the IMO Maritime Safety Committee(MSC) has established a road-map for the development of the non-mandatory goal-based MASS instrument(MASS Code) and started developing a non-mandatory MASS Code at MSC 105th meeting. Many countries are actively participating in the Correspondence Group on the development of MASS Code, and the development of detailed requirements for MASS functions in the MASS Code is underway. Especially, the concept of "Mode of Operation" for MASS functions was mentioned in the Correspondence Group for the first time, and it is expected that discussions on these modes will be conducted from the IMO MASS JWG meeting to held in April 2023. The concept of "Mode of Operation" will be useful in explaining MASS and MASS functions and will be discussed continually for the development of MASS Code. This paper reviews the contents of the IMCA M 220 document, which provides guidelines on operating modes, to conduct research on the benchmark for setting the operating modes of MASS.

Regional Topographic Characteristics of Sand Ridge in Korean Coastal Waters on the Analysis of Multibeam Echo Sounder Data (다중빔음향측심 자료분석에 의한 한국 연안 사퇴의 해역별 지형 특성)

  • BAEK, SEUNG-GYUN;SEO, YOUNG-KYO;JUNG, JA-HUN;LEE, YOUNG-YUN;LEE, EUN-IL;BYUN, DO-SEONG;LEE, HWA-YOUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.1
    • /
    • pp.33-47
    • /
    • 2022
  • In this study, distribution of submarine sand ridges in the coastal waters of Korea was surveyed using multibeam echo sounder data, and the topographic characteristics of each region were identified. For this purpose, the DEM (Digital Elevation Model) data was generated using depth data obtained from the Yellow Sea and the South Sea by Korea Hydrographic and Oceanographic Agency, and then applied the TPI (Topographic Position Index) technique to precisely extract the boundary of the sand ridges. As a result, a total of 200 sand ridges distributed in the coastal waters were identified, and the characteristics of each region of the sedimentary sediments were analyzed by performing statistical analysis on the scale (width, length, perimeter, area, height) and shape (width/length ratio, height/width ratio, linear·branch type, exposure·non-exposure type). The results of this study are expected to be used not only for coastal navigational safety, but also for marine naming support, marine aggregate resource identification, and fisheries resource management.

Suitability Evaluation Method for Both Control Data and Operator Regarding Remote Control of Maritime Autonomous Surface Ships (자율운항선박 원격제어 관련 제어 데이터와 운용자의 적합성 평가 방법)

  • Hwa-Sop Roh;Hong-Jin Kim;Jeong-Bin Yim
    • Journal of Navigation and Port Research
    • /
    • v.48 no.3
    • /
    • pp.214-220
    • /
    • 2024
  • Remote control is used for operating maritime autonomous surface ships. The operator controls the ship using control data generated by the remote control system. To ensure successful remote control, three principles must be followed: safety, reliability, and availability. To achieve this, the suitability of both the control data and operators for remote control must be established. Currently, there are no international regulations in place for evaluating remote control suitability through experiments on actual ships. Conducting such experiments is dangerous, costly, and time-consuming. The goal of this study is to develop a suitability evaluation method using the output values of control devices used in actual ship operation. The proposed method involves evaluating the suitability of data by analyzing the output values and evaluating the suitability of operators by examining their tracking of these output values. The experiment was conducted using a shore-based remote control system to operate the training ship 'Hannara' of Korea National Maritime and Ocean University. The experiment involved an iterative process of obtaining the operator's tracking value for the output value of the ship's control devices and transmitting and receiving tracking data between the ship and the shore. The evaluation results showed that the transmission and reception performance of control data was suitable for remote operation. However, the operator's tracking performance revealed a need for further education and training. Therefore, the proposed evaluation method can be applied to assess the suitability and analyze both the control data and the operator's compliance with the three principles of remote control.

A Study on the Characteristics Measurement of Main Engine Exhaust Emission in Training Ship HANBADA (실습선 한바다호 주기관 배기가스 배출물질 특성 고찰에 관한 연구)

  • Choi, Jung-Sik;Lee, Sang-Deuk;Kim, Seong-Yun;Lee, Kyoung-Woo;Chun, Kang-Woo;Nam, Youn-Woo;Jung, Kyun-Sik;Park, Sang-Kyun;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.6
    • /
    • pp.658-665
    • /
    • 2013
  • In this study, we measured particulate matter(PM) which emerged as the hot issue from the International Maritime Organization(IMO) and the exhaust emission using HANBADA, the training ship of Korea Maritime University. In particular, the PM was obtained with TEM grid. PM structure was observed by electron microscopy. And exhaust gases such as NOx, $CO_2$, and CO were measured using the combustion gas analyzer(PG-250A, HORIBA). The results of this study are as follows. 1) When the ship departed from the port, the maximum difference in PM emissions were up to 30 % due to the Bunker Change. 2) Under the steady navigation, emission of PM was $1.34mg/m^3$ when Bunker-A is changing L.R.F.O(3 %). And, at the fixed L.R.F.O (3 %), emission of PM was $1.19mg/m^3$. When the main engine RPM increased up to 20 % with fixed L.R.F.O(3 %), emission of PM was $1.40mg/m^3$. When we changed to low quality oil(L.R.F.O(3 %)), CO concentration from main engine increased about 16 %. On the other hand, when the main engine RPM is rising up to 20 %, CO concentration is increased more than 152 percent. These results imply that the changes of RPM is a dominant factor in exhaust emission although fuel oil type is an important factor. 3) The diameter of PM obtained with TEM grid is about $4{\sim}10{\mu}m$ and its structure shows porous aggregate.

Dispersion of Air Pollutants from Ship Based Sources in Incheon Port (인천항의 선박오염원에서 배출된 대기오염물질의 확산)

  • Kim, Kwang-Ho;Kwon, Byung Hyuk;Kim, Min-Seong;Lee, Don-Chool
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.488-496
    • /
    • 2017
  • Emissions of pollutants from ship-based sources are controlled by the International Maritime Organization (IMO). Since pollutants emitted from ship may be dispersed to the land, controlling emissions from ships is necessary for efficient air quality management in Incheon, where exposure to ship-based pollution is frequent. It has been noted that the ratios of air pollutant emissions from coastal areas to inland areas are about 14% for NOx and 10% for SOx. The air quality of coastal urban areas is influenced by the number of ships present and the dispersion pattern of the pollutants released depending on the local circulation system. In this study, the dispersion of pollutants from ship-based sources was analyzed using the numerical California Puff Model (CALPUFF) based on a meteorological field established using the Weather Research and Forecasting Model (WRF). Air pollutant dispersion modeling around coastal urban regions such as Incheon should consider point and line sources emitted from both anchored and running ships, respectively. The total average NOx emissions from 82-84 ships were 6.2 g/s and 6.8 g/s, entering and leaving, respectively. The total average SOx emissions from 82-84 ships, entering and leaving, were 3.6 g/s and 5.1 g/s, respectively. The total average emissions for NOx and SOx from anchored ships were 0.77 g/s and 1.93 g/s, respectively. Due to the influence of breezes from over land, the transport of pollutants from Incheon Port to inland areas was suppressed, and the concentration of NOx and SOx inland were temporarily reduced. NOx and SOx were diffused inland by the sea breeze, and the concentration of NOx and SOx gradually increased inland. The concentration of pollutants in the area adjacent to Incheon Port was more influenced by anchored ship in the port than sea breezes. We expect this study to be useful for setting emission standards and devising air quality policies in coastal urban regions.

Study on Legal Position of Aviation Security Subject in Aviation Safety and Security (공항보안요원의 법적 지위에 관한 연구)

  • Hwang, Ho-Won
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.21 no.2
    • /
    • pp.157-179
    • /
    • 2006
  • According to the Annex 17 to the Convention on International Civil Aviation, an appropriate authority of each contracting state has to define and allocate tasks and coordinate activities between the departments, agencies and other organizations of the State, airport and aircraft operators and other entities concerned with or responsible for the implementation of various aspects of the national civil aviation security programme. The airport has to take leading role in implementing security tasks at airport area because the airport operator is the provider of airport facilities and services to its customer and the security activities belong to its services. So Republic of Korea Government enact the Law, Aviation Safety and Security. The Purpose of this Act is to prevent any unlawful act in airport facilities with international conventions, including the ICAO to provide for standards, procedures and mandatory matters needed to ensure the safety and security of civil aviation. But the Act has some error. So is this paper to review the revision of aviation security regulation and the changes of aviation security responsibilities and task assignment. There is the term "aviation security personnel", who are charged with the task of preventing any act of disrupting the order and safety in airport. But there is no term "security screening personnel" who performs to detect or search for dangerous object, such as weapons or explosives, which may be used for the unlawful obstruction.

  • PDF

Study on High Sensitivity Metal Oxide Nanoparticle Sensors for HNS Monitoring of Emissions from Marine Industrial Facilities (해양산업시설 배출 HNS 모니터링을 위한 고감도 금속산화물 나노입자 센서에 대한 연구)

  • Changhan Lee;Sangsu An;Yuna Heo;Youngji Cho;Jiho Chang;Sangtae Lee;Sangwoo Oh;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.30-36
    • /
    • 2022
  • A sensor is needed to continuously and automatically measure the change in HNS concentration in industrial facilities that directly discharge to the sea after water treatment. The basic function of the sensor is to be able to detect ppb levels even at room temperature. Therefore, a method for increasing the sensitivity of the existing sensor is proposed. First, a method for increasing the conductivity of a film using a conductive carbon-based additive in a nanoparticle thin film and a method for increasing ion adsorption on the surface using a catalyst metal were studied.. To improve conductivity, carbon black was selected as an additive in the film using ITO nanoparticles, and the performance change of the sensor according to the content of the additive was observed. As a result, the change in resistance and response time due to the increase in conductivity at a CB content of 5 wt% could be observed, and notably, the lower limit of detection was lowered to about 250 ppb in an experiment with organic solvents. In addition, to increase the degree of ion adsorption in the liquid, an experiment was conducted using a sample in which a surface catalyst layer was formed by sputtering Au. Notably, the response of the sensor increased by more than 20% and the average lower limit of detection was lowered to 61 ppm. This result confirmed that the chemical resistance sensor using metal oxide nanoparticles could detect HNS of several tens of ppb even at room temperature.

Numerical Study on the Effect of the Arrangement Type of Rotor Sail on Lift Formation (로터세일의 배열 형태가 양력 형성에 미치는 영향에 관한 수치해석적 연구)

  • Jung-Eun Kim;Dae-Hwan Cho;Chang-Yong Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.197-206
    • /
    • 2023
  • Recently, the international community, including the International Maritime Organization (IMO), has strengthened regulations on air pollution emissions of ships, and eco-friendly ships are actively being developed to reduce exhaust gas emissions. Among them, rotor sail (RS), a wind-assisted ship propulsion system, is attracting attention again. RS is a cylindrical device installed on the ship deck, that generates hydrodynamic lift using a magnus effect. This is a next generation eco-friendly auxiliary propulsion technology, and Enercon company, which developed RS-applied ships, announced that fuel savings of more than 30% are possible. In this study, optimal installation conditions such as RS spacing and arrangement type were selected when multiple RSs were installed on ships. AR=5.1, SR=1.0, and De/D was fixed at 2.0 according to the RS arrangement, and the wind direction was considered only for the unidirectional +y-axis. Regarding arrangement conditions, five conditions were set at 3D intervals in the +x-axis direction from 3D to 15D and five conditions in the +y-axis direction from 5D to 25D. CL, CD and aerodynamic efficiency (CL/CD) were compared according to the square(□) and diamond(◇) shape arrangements. Consequently, the effect of RS on the longitudinal distance was not significantly different. However, in the case of RS flow characteristics according to the transverse distance, the interaction effect of RS was the greatest when the two RSs almost matched the wind direction. In the case of the RS flow characteristics according to the arrangement, notably, when the wind blew in the forward (0°) direction, the diamond (◇) arrangement was least affected by the backward flow between RSs.

Experimental Study on Energy Saving through FAN Airflow Control in the Generator Room of a 9200-ton Training Ship (9200톤급 실습선 발전기실 FAN 송풍유량 제어를 통한 선박에너지 절약에 관한 실험적 연구)

  • Moon-seok Choi;Chang-min Lee;Su-jeong Choe;Jae-jung Hur;Jae-Hyuk Choi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.697-703
    • /
    • 2023
  • As a part of the global industrial efforts to reduce environmental pollution owing to air pollution, regulations have been established by the International Maritime Organization (IMO). The IMO has implemented various regulations such as EEXI, EEDI, and CII to reduce air pollution emissions from ships. They are also promoting measures to decrease the power consumption in ships, aiming to conserve energy. Most of the power used in ships is consumed by electric motors. Among the motors installed on ships, the engine room blower that takes up a significant load, operates at a constant irrespective of demand. Therefore, energy savings can be expected through frequency control. In this study, we demonstrated the efficacy of energy savings by controlling the frequency of the electric motor of the generator blower that supplies combustion air to the generator's turbocharger. The system was modeled based on the output data of the turboharger outlet temperature in response to the blower frequency inpu. A PI control system was established to control the frequency with the target being the turbocharger outlet temperature. By maintaining the turbocharger design standard outlet temperature and controlling the blower frequency, we achieved an annual energy saving of 15,552kW in power consumption. The effectiveness of energy savings through frequency control of blower fans was verified during the summer (April to September) and winter (March to October) periods. Based on this, we achieved annual fuel cost savings of 6,091 thousand won and reduction of 8.5 tons of carbon dioxide, 2.4 kg of SOx, and 7.8 kg of NOx air pollutants on the training ship.