• Title/Summary/Keyword: 해동조건

Search Result 77, Processing Time 0.024 seconds

Effects of Pasteurization and Frozen Storage on Changes in Quality Characteristics of 10% Salted Egg Yolk (저온살균 및 냉동저장이 10% 가염난황의 품질특성에 미치는 영향)

  • Kim, Jae-Wook;Choi, Chun-Un
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.459-465
    • /
    • 2002
  • To obtain the basic data for commercial 10% salted egg yolk for mayonnaise preparation, 3 types of egg yolks [pasteurized egg yolk (Yolk A)-not salted, pasteurized before salting (Yolk B)-salted, and pasteurized after salting (Yolk C)-salted] were prepared, and the changes in quality characteristics of these egg yolks with frozen storage were tested. The results obtained were as follows; Yolk A gelatinized during frozen storage, thus could not used for mayonnaise preparation. The viscosity of the egg yolk increased $3{\sim}5$ times after salting. Viscosity of the salted egg yolk increased with frozen storage time. Viscosity of Yolk B was higher at $-20^{\circ}C$ than $-15^{\circ}C$. Viscosity of Yolk C, however, was higher at $-15^{\circ}C$ than $-20^{\circ}C$. Frozen storage of pasteurized salted egg yolk showed some effects on the emulsification capacity. The effect, however, was smaller than that of unpasteurized salted egg yolk. Microbes of salted egg yolk were decreased with frozen storage, but there was no difference between Yolk B and Yolk C. It was suggested that commercially pasteurized 10% salted egg yolk for mayonnaise preparation can be successfully stored for 12 months at the temperature of $-15{\sim}-20^{\circ}C$.

The Effects of the Warm Ischemic Time, the Preserving Temperature and the Cryopreservation Solution on the Viability of Tracheas (온혈허혈시간과 냉동보존온도와 보존액 조성에 따른 기관의 생육성 비교)

  • Sa, Young-Jo;Park, Jae-Kil;Sim, Sung-Bo;Jin, Ung;Moon, Young-Kyu;Lee, Sun-Hee;Jo, Kuhn-Hyun
    • Journal of Chest Surgery
    • /
    • v.42 no.3
    • /
    • pp.283-291
    • /
    • 2009
  • Background: Tracheal reconstruction after extended tracheal resection still remains as a major surgical challenge because good clinical outcomes are usually correlated with limited tracheal resection. Recent investigations with a using cryopreserved trachea for the reconstruction of a trachea have been carried out to overcome this problem. In this study, we analyzed viability of tracheas, which is an important determining factor for the success of transplanting a cryopreserved trachea and the development of post-transplantation tracheal stenosis, according to three different experimental factors: 1) the warm-ischemic time, 2) the cryopreservation solution and 3) the preserving temperature, to determine a better cryopreservation protocol and a better composition of the cryopreservation solution. Material and Method: Rats tracheas were harvested for different warm-ischemic times (0 hr, 12 hrs, 24 hrs). The tracheas were treated with recombinant insulin growth factor-1 (IGF) and they were stored at three different temperatures $(4^{\circ}C,\;-80^{\circ}C,\;-196^{\circ}C)$ for two weeks. After two weeks, we thawed the stored trachea and isolated the cells of the tracheas with using type II collagenase. We cultured the cells for seven days and then we compared the cellular viability by the MTT reduction assay. Result: Though cryopreservation is required to preserve a trachea for a longer time period, the viability of the tracheas stored at $-80^{\circ}C$ and $-196^{\circ}C$ was significantly reduced compared to that of the tracheas stored at $4^{\circ}C$. The viability of the tracheas with warm-ischemic times of 12 hrs and 24 hrs was also reduced in comparison to the tracheas with a warm-ischemic time of 0 hrs. Our data showed that the warm ischemic time and the parameters of crypreservation negatively affect on trachea viability. However, a cryopresrvation solution containing IGF-1 improved the cellular viability better than the existing cryopreservation solution. For the warm ischemic time group of a 0 hr, the addition of IGF-1 improved the viability of trachea at all the preserving temperatures. Conclusion: These experiments demonstrate that the viability of cryopreserved trachea can improved by modifying the components of the crypreservation solution with the addition of IGF-1 and reducing the warm-ischemic time.

Physicochemical Properties of Commercial Sweet Potato Starches (시판 고구마전분의 이화학적 특성)

  • Baek, Man-Hee;Cha, Dong-Su;Park, Hyun-Jin;Lim, Seung-Taik
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.755-762
    • /
    • 2000
  • Physicochemical properties of commercial sweet potato starches manufactured by 7 different companies were investigated in comparison with corn and potato starches. Crude ash and protein content varied from 0.36 to 1.02%, and from 0.04 to 0.14% based on dry weight, respectively. The protein contents were relatively smaller than that of corn or potato starch. But whiteness of the sweet potato starches was less than that of corn or potato starch. Mean diameter of the sweet potato starch granules varied from 14.23 to $21.08\;{\mu}m$ depending on the company and all sweet potato starches showed bimodal size distributions. Pasting viscosity measured by Rapid Viscoanalyzer(RVA) also showed variations among the starches of different companies. The starch from D company in Korea had the lowest pasting temperature$(74.00^{\circ}C)$ whereas the starch from a phillippine company(P) did the highest one$(80.35^{\circ}C)$. The peak viscosity of sweet potato starches was higher than that of corn starch but lower than that of potato starch. The D company starch also showed the highest peak viscosity(2283 cp) among the starches tested. Paste breakdown by hot shearing ranged from 524 cp (S company) to 1279 cp (HL company). Textural properties of the starch gels appeared significantly different among the starches of different manufacturers. The greatest hardness of the gel was $137.90\;g_{f}$ at 1 day storage whereas the lowest value was $31.53\;g_{f}$. Except the starches from 2 companies (P and S), the sweet potato starches formed very soft and weak gels. P or S company starches formed the gels similar to potato starch. Syneresis by freeze-thawing treatments appeared less for sweet potato starch gels than that for corn starch gels, but greater than that for potato starch gel. The overall properties of the sweet potato starches varied by the manufacturing companies, and ranged between those of corn and potato starches.

  • PDF

Studies on the Packaging and Preservation of Kimchi (우리나라 김치의 포장과 저장방법에 관한 연구)

  • Lee, Yang-Hee;Yang, Ick-Whan
    • Applied Biological Chemistry
    • /
    • v.13 no.3
    • /
    • pp.207-218
    • /
    • 1970
  • Studies were carried out to develope the most economical and practical methods of packaging and preservation of kimchi, so commercialization of kimchi manufacture could proceed rapidly. The results obtained may be summarized as following. (1) It is generally established that the acceptable range of lactic acid content of kimchi is between 0.4% and 0.75%. Based on sensory evaluation, kimchi having lactic acid content below 0.4% and above 0.75% was not edible, and the time of optimum taste corresponded to the vicinity of 0.5% of lactic acid content. For the refrigeration storage with or without preservatives, the packaging kimchi in plastic film must be done at the lactic acid content of 0.45%, for lactic acid fermentation will continue slowly after the packaging. However, for the heat sterilized kimchi the packaging should be done at the 0.5% of lactic acid content for the best because lactic acid fermentation is completely stopped after the packaging. (2) Polyethylene, polypropylene, and polycello were chosen as suitable packaging materials. Polyethylene is cheapest among them but kimchi packaged in this film was damaged frequently in handling process and gave off kimchi flavor. On the other hand polypropylene also gave off kimchi flavor, but its higher mechanical strength gave better protection to kimchi and it had superior display effect due to the transparancy. Therefore polypropylene made much better packaging material. Polycello proved to be the best packaging material from the standpoint of physical characteristics but its price is higher than that of other plastic films. To be effective, the thickness of plastic films for packaging kimchi must exceed 0.08mm. (3) Keeping property of kimchi appeared to be excellent by means of freezing. However, by the time the frozen kimchi was thawed out at room temperature, moisture loss due to drip was extensive, rendering the kimchi too stringy. (4) Preservation of kimchi at refrigerated temperatures proved to be the best method and under the refrigerated condition the kimchi remained fresh as long as 3 months. The best results were obtained when kimchi was held at $0^{\circ}C$. (5) In general, preservatives alone were not too elective in preserving kimchi. Among them potassium sorbate appeared to be most effective with the four fold extension of self-life at $20^{\circ}C$ and two fold extension at $30^{\circ}C$. (6) In heat sterilization the thickness of packaged kimchi product had a geat effect upon the rate of heat penetration. When the thickness ranged from 1.5 to 1.8cm, the kimchi in such package could be sterilized at $65^{\circ}C$ for 20 minutes. Kimchi so heat treated could be kept at room temperature as long as one month without apparent changes in quality. (7) Among combination methods, preservation at refrigerated and heat sterilization could be favorably combined. When kimchi was stored at $4^{\circ}C$ after being sterilized at $65^{\circ}C$ for 20 minutes, it was possible to preserve the kimchi for more than 4 months.

  • PDF

Preparation and Keeping Quality of Seasoned Smoked-Dried and Vacuum-Packed Squid (훈액처리에 의한 조미오징어 훈제품의 가공 및 품질안정성)

  • LEE Eung-Ho;PARK Hyang-Suk;OH Kwang-Soo;CHA Yong-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.4
    • /
    • pp.316-324
    • /
    • 1985
  • Vacuum-packed and seasoned smoked-dried products of red squid, Ommastrephes bartrami, caught in the Northern Pacific Ocean, were prepared and stored at room temperature for 90 days to test their keeping quality. Defrosted squids were eviscerated, skinned, and cut. The mantle meats were flavored with seasoning powders prepared from sugar, sorbitol, salt, monosodium glutamate, or smoke flavor (Smoke-EZ, Alpha Foods Co., Ltd.). After seasoning, the mantle meats were dried at $45^{\circ}C$ for 7 hours, vacuum packed in plastic film bags, and pasteurized in water at $95^{\circ}C$ for 30 minutes. Three kinds of products were prepared : control products (seasoned-dried), solid smoked seasoned-dried and liquid smoked seasoned-dried. The moisture level, water activity, color value (L, a and b value), texture, and viable cell counts of bacteria in these products were determined during storage at room temperature, $5^{\circ}C\;and\;35^{\circ}C$, respectively. The results showed that the products could be preserved at good condition for 90 days though they developed pale brown color during storage. The contents of free amino acids, nucleotides and their related compounds, and the compositions of fatty acids of raw squid and smoked products were analysed. In the amino acids, arginine, taurine, glycine and proline were abundant in raw and smoked products. The contents of hypoxanthine of raw and smoked products were higher than the other nucleotides and their related compounds. In fatty acid compositions of raw and smoked products, the dominant fatty acids were docosahexaenoic acid (22:6), hexadecanoic acid(16:0) and eicosapentaenoic acid (22:5).

  • PDF

Microbial and Quality Changes during Storage of Raw Oyster Treated with High Hydrostatic Pressure (초고압 처리한 생굴의 저장 중 미생물수 및 품질 변화)

  • Park, Whan-Jun;Jwa, Mi-Kyung;Hyun, Sun-Hee;Lim, Sang-Bin;Song, Dae-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.10
    • /
    • pp.1449-1455
    • /
    • 2006
  • Raw oysters were treated at $10^{\circ}C$ and $22^{\circ}C/350$ Mpa/15 min, and microbial counts and quality were measured during storage of 14 days at $10^{\circ}C$. Total viable cell count (TVCC) in untreated oyster increased greatly during storage from starting inoculum of $1.6\times10^2\;CFU/mL$, and reached to $5.6\times10^2\;CFU/mL$ after 4 days of storage. TVCC of the pressure-treated was about $10^1\;CFU/mL$ right after high hydrostatic pressure treatment and increased slowly during storage, and about $10^3\;CFU/mL$ even after 7 days of storage. Lactic acid bacteria count (LABC) in the untreated was increased greatly during storage from starting inoculum of $3.3\times10^3\;CFU/mL$ at 3 days of storage and $7.2\times10^4\;CFU/mL$ after 4 days of storage. LABC in the pressure-treated was detected only after 5 days of storage, and about $10^2\;CFU/mL$ after 8 days of storage. The pH of the untreated was 6.19 and decreased gradually during storage, and 5.83 after 4 days of storage. The pH of the pressure-treated showed little change during storage, and 6.07, 6.03 and 5.82 after storage of 4, 8 and 14 days, respectively. Volatile basic nitrogen (VBN) in the untreated was 16.8 mg%, and maintained almost constant until 1 day of storage, and then increased suddenly, and 30.1 mg% after 4 days of storage. VBN of the pressure-treated stayed unchanged during storage, and about 20 and 23 mg% even after 4 and 8 days of storage, respectively. Hunter $L^*,\;a^*\;and\;b^*$ values were increased until 2 days of storage and then showed no change during storage. Demerit score was the lowest in the thawed raw oyster, and then in the increasing order of the pressure-treated (4 day and 8 day storage) and the untreated (4 day storage).

Processing of Intermediate Product(Krill Paste) Derived from Krill (크릴을 원료로 한 식품가공용 중간소재(크릴페이스트) 가공에 관한 연구)

  • LEE Eung-Ho;CHA Yong-Jun;OH Kwang-Soo;Koo Jae-Keun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.3
    • /
    • pp.195-205
    • /
    • 1985
  • As a part of investigation to use the Anatrctic krill, Euphausia superba, more effectively as a food source, processing conditions, utilizations and storage stability of krill paste (intermediate product of krill) were examined and also chemical compositions of krill paste were analyzed. Frozen raw krill was chopped, agitated with $25\%$ of water to the minced krill and then centrifuged to separate the liquid fraction from the residue. This liquid fraction was heated at $98^{\circ}C$ for 20 min. to coagulate the proteins of krill, and it was filtered to separate the protein fraction. Krill paste was prepared with grinding the protein fraction, adding $0.2\%$ of polyphosphate and $0.3\%$ of sodium erythorbate to the krill paste for enhancing of functional properties and quality stability. The krill paste was packed in a carton box, and then stored at $-30^{\circ}C$. Chemical compositions of krill paste were as follows : moisture $78\%$, crude protein $12.9\%$, crude lipid $5.9\%$, and the contents of hazardous elements of krill paste as Hg 0.001 ppm, Cd 1.15 ppm, Zn 9.1 ppm, Pb 0.63 ppm and Cu 11.38ppm were safe for food. The amino acid compositions of krill paste showed relatively high amount of taurine, glutamic acid, aspartic acid, leucine, lysine and arginine, which occupied $55\%$ of total amino acid and also taurine, lysine, glycine, arginine and proline were occupied $65\%$ of total free amino acid. Fatty acid compositions of krill paste consist of $32.4\%$ of saturated fatty acid, $29.6\%$ of monoenoic acid and $38.0\%$ of polyenoic acid, and major fatty acids of product were eicosapentaenoic acid ($17.8\%$), oleic acid ($16.9\%$), palmitic acid ($15.3\%$), myristic acid ($8.7\%$) and docosahexaenoic acid ($8.4\%$). In case of procssing of fish sausage as one of experiment for krill paste use, Alaska pollack fish meat paste could be substituted with the krill paste up to $30\%$ without any significant defect in taste and texture of fish sausage, and the color of fish sausage could be maintained by the color of krill paste. Judging from the results of chemical and microbial experiments during frozen storage, the quality of krill paste could be preserved in good condition for 100 days at $-39^{\circ}C$.

  • PDF