• Title/Summary/Keyword: 항진균활성

Search Result 261, Processing Time 0.025 seconds

Isolation of Bacillus sp. SW29-2 and Its Antifungal Activity against Colletotrichum coccodes (Bacillus sp. SW29-2의 분리 및 Colletotrichum coccodes에 대한 항진균 활성)

  • Han, Yeong-Hwan
    • Journal of Life Science
    • /
    • v.27 no.6
    • /
    • pp.688-693
    • /
    • 2017
  • Antifungal bacterium against Colletotrichum coccodes causing black dot disease of potatoes and anthracnose of tomatoes was isolated from sewage sludge. The isolate showed a 99% sequence homology of partial 16S rRNA of Bacillus methylotrophicus CBMB205 and Bacillus amyloliquefaciens subsp. plantarum FZB42. The isolate was identified as Bacillus sp. SW29-2, using the neighbor-joining phylogenetic tree, BlastN sequence analysis, and morphological and cultural characteristics. Bacillus sp. SW29-2 is an aerobic, Gram-positive, endospore-forming bacterium, of which the morphological and physiological characteristics were the same as those of type strain B. lichniformis CBMB205, except for the cell growth of over 4% NaCl. The cell growth of the temperature and the initial pH of the medium was shown at $18-47^{\circ}C$ (opt. ca. $38^{\circ}C$) and 3-9 (opt. ca. 6.0), respectively. The inhibition size (diameter) of Bacillus sp. SW29-2 against four strains of C. coccodes ranged from 23 to 29 mm. Also, the isolate showed antifungal activity against penicillium rot-causing Penicillium expansum in apples. Thus far, any report on the antifungal activity of Baciilus spp. against C. coccodes has not been found. These results suggest that the Bacillus sp. SW29-2 isolate could be used as a possible biocontrol agent against C. coccodes, and further applied to other plant pathogenic fungi.

Screening of Antifungal Activities of Medicinal Plants for the Control of Turfgrass Fungal Disease (잔디 병해 방제를 위한 약용식물의 항균작용 탐색)

  • Kang, Jae Young;Kim, Dae Ho;Lee, Dong Gu;Kim, In Seob;Jeon, Min Goo;Lee, Jae Deuk;Kim, Ik Hwi;Lee, Sanghyun
    • Weed & Turfgrass Science
    • /
    • v.2 no.1
    • /
    • pp.70-75
    • /
    • 2013
  • Seven medicinal plant extracts were tested for antifungal activities against six species of the major turfgrass pathogenic fungi (Colletotrichum graminicola, Pythium spp., Rhizoctonia cerealis, Rhizoctonia solani AG1-1, Rhizoctonia solani AG2-2, and Sclerotinia homoeocarpa) using paper disk diffusion method. Three medicinal plant extracts, including Pinus densiflora showed antifungal activities. In suppression of mycelium growth test, on medium adding P. densiflora extract showed that inhibition rate of mycelium growth were above 80% in 10 mg/10 ml concentration of the extract. The inhibition rate of Pythium spp. was 100% and C. graminicola was 84.3% in 10 mg/10 ml concentrations of P. densiflora extract, respectively. In particularly, the inhibition rate of Pythium spp. was 89.5% in 2 mg/10 ml concentrations of P. densiflora extract. As a result, P. densiflora extract showed high antifungal activity to Pythium spp. and C. graminicola of the turfgrass pathogen in in vitro test.

Characterization of an Antifungal Substance Isolated from Aerial Parts of Vitis vinifero L. (포도나무 (Vitis vinifero L.) 지상부로부터 분리한 항진균성 활성물질의 특성규명)

  • Lim, Tae-Heon;Youl, Kwon-Soon;Choi, Yong-Hwa
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.2
    • /
    • pp.82-86
    • /
    • 2007
  • Methanol extract obtained from aerial parts of Vitis vinifero L. was successively fractionated with n-hexane, ethylacetate, n-butanol, and water. From ethylacetate fraction, an active compound was isolated through silica gel column chromatography and recrystallization, and was identified as Lup-20(29)-ene-3,28-diol on the basis of EI-MS data. The compound, at 100 mg $mL^{-1}$, inhibited the mycelial growth of Phytophthora capsici and Colletotrichum acutatum by 52.1 % and 40.8%, respectively.

The Structure of Phenolic Compounds and Their Antibiotic Activities in Umbilicaria vellea (Umbilicaria vellea 중 페놀성 화합물의 구조 및 항균활성)

  • Min, Tae Jin;Bae, Kang Gyu
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.9
    • /
    • pp.623-629
    • /
    • 1996
  • In order to identify antibiotic substances in the extract of a lichen, Umbilicaria vellea, the extract was chromatographed and two compounds were isolated. Compound I which showed antifungal and antibacterial activities, melted around 129∼132$^{\circ}C$ and showed UV absorption at 217, 265 and 300 nm. It showed a molecular ion at m/z 196. Its molecular formular was confirmed to be $C_{10}H_{12}O_4$ from elemental analysis. From its IR and NMR data it was identified to be ethyl 2,4-dihydroxy-6-methyl benzoate. Compound II melted around 58∼59$^{\circ}C$ and showed UV absorption at 212, 276 and 282 nm. It showed a molecular ion at m/z 124 and molecular formular was confirmed to be $C_7H_8O_2.$ From the analysis of its IR and NMR spectra it was identified to be 5-methyl-1,3-benzenediol.

  • PDF

Isolation of Antifungal Active Compounds from the Leaves of Lindera erythrocarpa (비목나무(Lindera erythrocarpa) 잎으로부터 항진균성 활성물질의 분리)

  • Kwon, Sun-Youl;Kim, Jin-Ho;Baek, Nam-Ln;Choi, Gyung-Ja;Cho, Kwang-Yun;Lee, Byung-Moo;Choi, Yong-Hwa
    • Applied Biological Chemistry
    • /
    • v.46 no.2
    • /
    • pp.150-153
    • /
    • 2003
  • Methanol extract obtained from Lindera erythocarpa leaves was successively fractionated with n-hexane, ethylacetate, n-butanol, and $H_2O$. From ethylacetate fraction, an active fraction was isolated through repeated silica gel column chromatography and recrystallization, and was identified as a stereoisomer complex of methyllucidone by MS and MMR analyses. The complex showed 85% antifungal activity at 50 {\mu}g/ml$ against the disease wheat leaf rust.

Isolation of an Antifungal Compound from Aerial Parts of Platycarya strobilacea (굴피나무(Platycarya strobilacea) 지상부로부터 항진균성 활성물질 분리)

  • Chae, Sang-Gi;Kim, Jin-Ho;Kang, Sang-Jae;Baek, Nam-In;Han, Jae-Taek;Choi, Yong-Hwa
    • Applied Biological Chemistry
    • /
    • v.46 no.3
    • /
    • pp.268-270
    • /
    • 2003
  • Methanol extract obtained from aerial parts of Platycarya strobilacea was successively fractionated with n-hexane, ethylacetate, n-butanol, and water. From ethylacetate fraction, an active compound was isolated through repeated silica gel column chromatography and was identified as 5-hydroxy-2-methoxy-1,4-naphthoquinone by MS and NMR analyses. The compound showed in vivo 76% antifungal activity at $100\;{\mu}g/ml$ against tomato late blight disease.

Characterization of Potential Plant Growth-promoting Rhizobacteria as Biological Agents with Antifungal Activity, Plant Growth-promoting Activity, and Mineral Solubilizing Activity (항진균 활성, 식물 생장촉진 활성, 미네랄 가용화능을 가진 생물학적 제제로서 잠재적 식물 생장촉진 근권세균의 특성조사)

  • Lee, Song Min;Kim, Ji-Youn;Kim, Hee Sook;Oh, Ka-Yoon;Lee, Kwang Hui;Lee, Sang-Hyeon;Jang, Jeong Su
    • Journal of Life Science
    • /
    • v.31 no.7
    • /
    • pp.641-653
    • /
    • 2021
  • The purpose of this study was to confirm the antifungal activity, plant growth-promoting activity, and mineral solubilizing activity of 18 types of bacteria isolated purely from rhizosphere soil. The potential of isolates of the genus Bacillus and Pseudomonas as biocontrol agents was confirmed through the antifungal activity of these isolates. This activity has been determined to be due to various hydrolytic enzymes on the cell wall of plant pathogenic fungi and the production of siderophores in isolates. In addition, most of the isolates have been found to have aminocyclopropane-1-carboxylate deaminase production activity, indole-3-acetic acid production activity, and nitrogen fixation activity. These characteristics are believed to have a positive effect on root development, growth, and the productivity of crops via a reduction in the concentration of ethylene under conditions of environmental stress, to which plants are commonly exposed. In addition, on testing for the solubilizing activity of the isolates for phosphoric acid, silicon, calcium carbonate, and zinc, some isolates were found to have mineral solubilizing activities. Inoculation of these isolates during plant growth is expected to assist plant growth by converting nutrients necessary for growth into usable forms that can be absorbed by plants. The 18 isolated strains can be used as biocontrol agents due to their antifungal activity, plant growthpromoting activity, and mineral solubilizing activity.

Antifungal effect of electrolyzed hydrogen water on Candida albicans biofilm (Candid albicans 바이오필름에 대한 전기분해 수소수의 항진균 효과)

  • Pyo, Kyung-Ryul;Yoo, Yun Seung;Baek, Dong-Heon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.3
    • /
    • pp.212-220
    • /
    • 2015
  • Purpose: Candida albicans can cause mucosal disease in many vulnerable patients. Also they are associated with denture-related stomatitis. Electrolyzed water is generated by electric current passed via water using various metal electrodes and has antimicrobial activity. The aim of this study was to investigate antifungal activity of electrolyzed water on C. albicans biofilm. Materials and Methods: C. albicans was cultured by sabouraud dextrose broth and F-12 nutrient medium in aerobic and 5% $CO_2$ condition to form blastoconidia (yeast) and hyphae type, respectively. For formation of C. albicans biofilm, C. albicans was cultivated on rough surface 6-well plate by using F-12 nutrient medium in $CO_2$ incubator for 48 hr. After electrolyzing tap water using various metal electrodes, the blastoconidia and hyphal type of C. albicans were treated with electrolyzed water. C. albicans formed blastoconidia and hyphae type when they were cultured by sabouraud dextrose broth and F-12 nutrient medium, respectively. Results: The electrolyzed water using palladium electrode (EWP) exhibited antifungal effect on blastoconidia of C. albicans. Also, the EWP significantly has antifungal activity against C. albicans biofilm and hyphae. In the electrolyzed water using various metal electrodes, only the EWP have antifungal activity. Conclusion: The EWP may use a gargle solution and a soaking solution for prevention of oral candidiasis and denture-related stomatitis due to antifungal activity.

An Antifungal Subatance, 2,4-Diacetylphloroglucinol Produced from Antagonistic Bacterium Pseudo-monas fluorescens 2112 Against Phytophthora capsici (Phytophthora capsici를 길항하는 Pseudononas fluorescens 2112가 생산하는 항진균 항생물질 2,4-diacetylphloroglucinol)

  • 이은탁;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.1
    • /
    • pp.37-42
    • /
    • 2001
  • An antifungal substance was purified from culture broth of Pseudomonas flulorescens 2112 that showed a broad-spectrum antagonistic activity against various phytopathogenic fungi including capsici. The substance was identified as 2,4-diacetylphloro-glucinol basd on NMR analysis. The 2,4-diacetylphloroglcinol showed antibiotic activity in broad acidic range from pH 1.0 to pH 9.0. About 83% of initial activity was remained after incubation for 30min ar $60^{\circ}C$, however, the activity was dropped up to 50% after 30 min incubation in $80^{\circ}C$. When the nucleotides of P. capsici treated with 2,4-diacetylphloroglucinol were labeled with[$^{3}$ H]-Adenin, the newly synthesized and radioactive-labeled RNA was significantly reduced than those of untreated P. capsici. indicating that the 2,4-diacetylphloroglucinol inhibits RNA synthesis.

  • PDF

Biological Control of Pythium Root Rot by Radiation Induced Mutant, Bacillus lentimorbus WJ5a17 (방사선유도 돌연변이체 Bacillus lentimorbus WJ5a17에 의한 Pythium Root rot의 방제)

  • 이영근;김재성;장병일;장유신;이호용
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.3
    • /
    • pp.276-285
    • /
    • 2003
  • To control pythium root rot, Bacillus lentimorbus WJ5a17 with high anti-fungal activity against Pythium ultimum was induced from B. lentimorbus WJ5 by gamma radiation ($^{60}Co$). The biocontrollers of FWJ5 and FWJ5a17 were formulated ($1.0\times 10^{11}$) with B. lentimorbus WJ5 and WJ5a17, respectively, The population density of FWJ5 and FWJ5a17 maintained highly up to $1.0\times 10^{9}$ CFU $g^{-1}$ in nursery and field soils until 30 days after treatment. P. ultimum spores germination were inhibited 71.0% and 81.4% by FWJ5 and FWJ5a17, respectively. Pythium root rot of yea pepper, Chinese cabbage and radish were significantly (p < 0.05) controled by one time treatment of FWJ5 and FWJ5a17.