• Title/Summary/Keyword: 항산화 효소

Search Result 1,267, Processing Time 0.027 seconds

Change of Antioxidant Enzymes Activities in Leaves of Soybean(Glycine max) during Water Stresses and Following Recovery (대두에서 수분장해 및 회복시 엽중 항산화효소의 활성 변화)

  • Kang, Sang-Jae;Kim, Tae-Sung;Park, Woo-Churl
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.2
    • /
    • pp.164-170
    • /
    • 1999
  • This experiment was carried out to elucidate change of antioxidant enzymes activities subjected to water stresses in soybean plant. In this study, we measured the activities of ascorbate peroxidase(APDX), monodehydroascorbate reductase(MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase(GR) subjected to drought or flooding stresses for 4days and following recovery for 3days. Leaves of two soybean lines subjected to drought or flooding showed premature senescence as evidenced by the decrease in water content and total soluble protein content but those of soybean leaves was increased when stresses were recovered for 3days. The activities of APDX and GR subjected to drought or flooding were the decrease but those of enzymes were recovered when water stress was recovered. The activities of MDHAR with drought or flooding were on the decrease, whereas those of DHAR were increased, respectively. Antioxidant contents decreased continually subjected to drought or flooding but it recovered after 3 days subjected to water stresses.

  • PDF

Antioxidant and anti-diabetic effects of Ixeris strigosa extract (선씀바귀 추출물의 항산화 및 항당뇨 효과)

  • Ji, Yun-Jeong;Lee, Eun Young;Lee, Ji Yeon;Seo, Kyung Hye;Kim, Dong Hwi;Park, Chun Geon;Kim, Hyung Don
    • Journal of Nutrition and Health
    • /
    • v.53 no.3
    • /
    • pp.244-254
    • /
    • 2020
  • Purpose: Ixeris strigosa (IS) is a perennial plant that commonly grows in meadows. The leaves and roots of IS have been used in medicine as a sedative. This study evaluated the antioxidant and carbohydrate-digestive-enzyme inhibitory effects of IS to determine its potential as an essential antioxidant and glycemic inhibitor for type 2 diabetics. Methods: The antioxidative and α-amylase and α-glucosidase inhibitory activities were examined using the water extracts (ISW), ethanol extracts (ISE), and solvent fractions from IS. The antioxidative activities were measured using in vitro methods by measuring the 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical scavenging activity. Results: Investigations of the total polyphenol, flavonoid content, in vitro antioxidant activity, and α-amylase and α-glucosidase inhibitory activities of the IS extract showed that the ISE had higher total phenolic and flavonoid contents than the ISW, as well as high antioxidant activity. The ethanolic extracts of IS (70%) had an α-amylase inhibitory activity of 78.55%. The ethyl acetate fraction (90.56%) showed higher α-glucosidase inhibitory activity than the positive control, acarbose (83.01%). Conclusion: Among the ISE fractions, the ethyl acetate and butanol fractions showed the best digestive enzyme inhibitory activity. Moreover, the antioxidant activity of the extract and the carbohydrate, α-amylase, and α-glucosidase inhibitory effects showed a stronger correlation with the total phenol and flavonoid contents compared to the ISW. As a result, the antioxidant and digestive enzyme inhibitory activities of high ISE are due to the phenolic compounds, particularly the flavonoid compounds. Therefore, ethyl acetate and butanol fractions of the 70% ethanol extract are excellent anti-diabetic functional materials.

Antioxidative Activity of Enzymatic Hydrolysates Derived from Anchovy Muscle Protein (멸치육 단백질 효소가수분해물의 항산화작용)

  • YEUM Dong-Min;LEE Tae-Gee;PARK Yeung-Ho;KIM Seon-Bong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.5
    • /
    • pp.842-849
    • /
    • 1997
  • This study was designed to investigate the antioxidative activity of enzymatic hydrolysates prepared from defatted anchor muscle by various pretenses. In these hydrolysates, the hydrolysates derived from pepsin and Protamex showed the strongest antioxidative activity. Enzymatic hydrolysates also showed the synergistic effects on antioxidative activity of $\alpha-tocopherol$, and almost no change in butylated hydroxytoluene (BHT). Peroxidation of metal ions $(Fe^{3+},\;Cu^{2+})$ was inhibited by enzymatic hydrolysates. Ten fractions (P-1 to P-10) were fractionated from the peptic hydrolysates by Amberlite IR-120 and Bio-gel P-2 column chromatography. The maximum antioxidative activity was observed in the traction P-2 (fraction No. $26\~31$). In amino acid composition of before and after hydrolysis of defatted anchovy muscle and the active fractions (P-2), contents of aspartic arid and glutamic acid were increased, but alanine, cysteine, tyrosine and phenylalanine were decreased.

  • PDF

The Responses of Antioxidative Enzymes and Salt Tolerance of Atriplex gmelini (Atriplex gmelini(가는갯능쟁이)의 내염성과 항산화 효소 반응)

  • 배정진;윤호성;추연식;송승달
    • The Korean Journal of Ecology
    • /
    • v.26 no.5
    • /
    • pp.273-280
    • /
    • 2003
  • Saline conditions invoke oxidative stress attributed to the overproduction of reactive oxygen species (ROS). Changes in quantum efficiency and antioxidative enzyme activity upon salt treatment were examined in a salt-tolerant plant, Atriplex gmelini, to test the hypothesis that salt tolerance of A. gmelini is due to the increased activity of antioxidative enzymes. A. gmelini showed optimum growth at 100 mM NaCl producing 116% of the shoot dry weight over control plants in 0 mM NaCl treatment. Healthy growth persisted up to 300 mM NaCl treatment maintaining normal internal water content and dry weight. No photochemical stress or damages on antioxidative defense system was obvious in plants of 2 and 4 day salt treatment which was indicated by increased quantum efficiency (Fv/Fm value), decreased stress index (Fo/Fm value), and increased activity of antioxidative enzymes such as SOD, APX, GR. However, the plants treated with 400 mM NaCl showed decrease in growth and in antioxidative enzyme activity although the enzyme activity was still higher than that of the 0 mM NaCl treated plants (l31%, 114%, and 134% of the SOD, APX, and GR activity, respectively). Interestingly, another important antioridative enzyme that scavenges H₂O₂ in plant cells, CAT, showed rapid decrease in its activity as salt concentration increased; 38%, 22%, 15% of the 0 mM NaCl treated plants at 200, 300, 400 mM NaCl treatments, respectively. It appears that the enzymes in ascorbate-glutathione cycle such as APX and GR play the major roles in scavenging ROS produced by salt stress in A. gmelini. After 6 days of salt treatment, the damage in photochemical and antioxidative defense system was indicated by decreased Fv/Fm value and increased Fo/Fm value. A. gmelini appears to cope with short term salt treatment by enhanced activity of the antioxidative defense system, whereas long term stress invoke oxidative stress by increased ROS due to the damages in photochemical and antioxidative system.

Effect of Enzyme Treatments on the Extraction Efficacy and Antioxidant Activity of Haematococcus Extract from Haematococcus pluvialis (Haematococcus pluvialis로부터 Haematococcus 추출물 제조 공정에서 효소 처리가 추출 효율과 항산화 활성에 미치는 영향)

  • In, Man-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.194-199
    • /
    • 2009
  • An efficient production method of food-grade heamatococcus extract was developed based on stepwise enzymatic hydrolysis. In the first step, Haematococcus pluvialis cells hydrolysis carried out with commercially available exopeptidase(Flavourzyme) and endopeptidase (Alcalase), resulted in increased astaxanthin content. In the second step, proteolytic hydrolyzed H. pluvialis cells treated with hetero-polysaccharides hydrolytic enzyme (Viscozyme). By two-stage treatments using Alcalase and Flavourzyme and Viscozyme, the highest astaxanthin content was obtained. The astaxanthin content was remarkably enhanced by 320% $(529{\mu}g/g\rightarrow2,256{\mu}g/g)$ than that of the non-treated extract. And then, antioxidative activities determined by DPPH method were increased with increasing the astaxanthin content in haematococcus extract prepared by enzymatic hydrolysis.

Effect of Aerobic Exercise with Resistance Exercise Programs on Blood MDA and SOD, GPx Activities in Elderly Women (유산소 운동을 병행한 근 저항성 운동이 노인 여성의 혈중 MDA 및 SOD, GPx 활성에 미치는 영향)

  • Nan, Sang-Nam;Kim, Jong-Hyuck;Ji, Min-Cheul
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.391-398
    • /
    • 2009
  • The purpose of this study was to investigate the effects of aerobic exercise(folk dance) with resistance exercise(elastic band) for 12 weeks on blood MDA concentration and SOD GPx activities in the elderly women. The subjects consisted 12 elderly women between 65-75 years exercise were folk dance(HRmax 50-60% levels, 60min, two per a week) and elastic band(yellow band, 60min, two per a week) program for 12 weeks. SOD, GPx activities in the before combined exercise were significantly increased than that in after combined exercise. These results show that aerobic exercise with resistance exercise program in considered to contribute enforced of antioxidant enzyme system by increased SOD and GPx activities in elderly women.

Effects of Fermented Mulberry Leaves (Morus alba L.) on Oxidative Modification of Antioxidnat Enzymes (항산화 효소의 산화적 변형에 뽕잎 발효물이 미치는 영향)

  • Kang, Jung Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.985-994
    • /
    • 2019
  • Muberry (Morus alba L.) leaves fermented with Hericium erinaceum mycelium (MA-HE) were assessed for the protection against oxidative modification of antioxidant enzymes, Cu,Zn-superoxide dismutase(SOD) and ceruloplasmin(CP). MA-HE were shown to significantly inhibited oxidative modifications and inactivations of Cu,Zn-SOD and CP induced by peroxyl radical. Antioxidant activity of MA-HE evaluated using peroxyl radical scavenging assays. MA-HE showed 44.03% of peroxyl radical scavenging activity at $100{\mu}g/mL$. Thus, MA-HE protect the antioxidant enzymes from oxidative damage by the scavenging peroxyl radicals. The results suggested that MA-HE was effectively removed reactive oxygen species in cells, thereby protecting cytotoxicity caused by oxidative stress.

Effects of N-nitrosoethylurea on the Activities of Antioxidant Enzymes from Rat Liver Cell (N-nitrosoethylurea가 쥐 간세포의 항산화효소의 활성에 미치는 영향)

  • 이미영
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.2
    • /
    • pp.173-179
    • /
    • 2002
  • N-nitrosoethylurea (NEU) -induced changes of lipid peroxide content, aldehyde metabolic enzyme activities and antioxidant enzyme activities were examined in cultured rat liver cell. Aldehyde metabolic enzymes tested in this investigation were alcohol dehydrogenase and aldehyde dehydrogenase. Several antioxidant enzymes tested were glutathione transferase, superoxide dismutase, glutathione reductase and catalase. When the cell was exposed with various concentrations of NEU, lipid peroxide content increased about 2.5 fold with 6.25 mM NEU. Maximun 2.3 times higher alcohol dehydrogenase activity was found after NEU treatment. About 2 times higher aldehyde dehydrogenase activity could also be observed. Only slight increases of glutathione transferase and catalase activities occurred with NEU treatment. In addition mnximun 1.5 times higher superoxide dismutase activities and 3 times higher glutathione reductase activities were found after NEU treatment. Therefore, it is likely that the increases of superoxide dismutase and glutathione reductase could contribute in a antioxidative process against NEU toxicity.