• Title/Summary/Keyword: 항복 비틀림 모멘트

Search Result 9, Processing Time 0.019 seconds

Torsional moment of orthodontic wires (교정용 와이어의 비틀림 모멘트)

  • Choy, Kwangchul;Kim, Kyung-Ho;Park, Young-Chel;Kang, Chang-Soo
    • The korean journal of orthodontics
    • /
    • v.30 no.4 s.81
    • /
    • pp.467-473
    • /
    • 2000
  • As a rectangular wire Is inserted into edgewise brackets the wire exerts a force system three-dimensionally. The force system may include bending force in first and second orders and a torsional force in third order Analytical and experimental studies on bending force have been Introduced, but information about torsion is still lack. The purpose of this study was to estimate the torsional moment in the force system of rectangular arch wires through theoretical and experimental studies. Wires most frequently used for third order control were selected as study materials. Cross sections of 0.016x0.022, 0.017x0.025, 0.019x0.025 inch rectangular wires in foot different materials such as stainless steel(Ormco), TMA(Ormco), NiTi(Ormco), and braided stainless steel (DentaFlex, Dentaurum) were used. The torque/twist rate of each test material was calculated using the torsion formula. Torque/twist rate, yield torsional moment, and ultimate torsional moment were measured with a torque gauge. The torsion formula assesses that the torque/twist rate (T/$\theta$) is proportional to the characteristics of material (G) and cross section (J), and is inversely proportional to the length of wire (L). Most experimental results corresponded with the formula. The relative stiffness was calculated for reference to a logical sequence of wire changes.

  • PDF

Change of physical properties after diameter increase by electroplating of orthodontic rectangular stainless steel wire (전기도금을 이용한 스테인레스 스틸 각형 선재의 굵기 증가 후 물성 변화)

  • Lee, Jeong-Seok;Lee, Ki-Heon;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.33 no.2 s.97
    • /
    • pp.131-140
    • /
    • 2003
  • The purpose of this study was to evaluate clinical applications of electroplating method through investigation of the physical properties of orthodontic rectangular wires according to varying their cross section. For the study, it was accomplished to electroplate the 0.016-inched orthodontic rectangular stainless steel wire. The cross section of stainless steel orthodontic rectangular wire increased from $0.016{\times}0.016inch\;to\;0.017{times}0.017inch$ by electroplating. The wire was heat treated to improve an adhesion between the wire and electroplated metal. h three-point bending test and torsion test were conducted in order to compare physical properties among three wire groups; $0.016{\times}0.016wires(group 016),\; electroplated\;0.016{\times}0.016wires(group\;016P)\;and\;0.017{\times}0.017$ wires (group 017). Through the investigations of each wire group, following results were obtained 1. At three-point bending test, the group Ol6P showed higher tendency in the degree of stiffness, yield strength and ultimate tensile strength than the group 016. Stiffness and ultimate tensile strength showed statistically significant differences between two groups at three-point bending test (p<0.05). 2. Stiffness, yield strength, and ultimate tensile strength of the group 016P showed lower tendency than those of the group 017 Stiffness showed statistically significant differences between two groups at three-point bending test (p<0.05). 3. Torque/twist rate, yield torsional moment, and ultimate torsional moment of the group 016P showed higher tendency than those of the group 016. All measurements showed statistically significant differences between two groups alter torsion test (p<0.05). 4. Torque/twist rate, yield torsional moment, and ultimate torsional moment of the group 0166P showed lower tendency than those of the group 017. Yield torsional moment, and ultimate torsional moment showed statistically significant differences between two groups after torsion test (p<0.05).

The Interactive Effect of Translational Drift and Torsional Deformation on Shear Force and Torsional Moment (전단력 및 비틀림 모멘트에 의한 병진 변형 및 비틀림 변형의 상호 작용 효과)

  • Kim, In-Ho;Abegaz, Ruth A.
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.277-286
    • /
    • 2022
  • The elastic and inelastic responses obtained from the experimental and analytical results of two RC building structures under the service level earthquake (SLE) and maximum considered earthquake (MCE) in Korea were used to weinvestigate the characteristics of the mechanisms resisting shear and torsional behavior in torsionally unbalanced structures. Equations representing the interactive effect of translational drift and torsional deformation on the shear force and torsional moment were proposed. Because there is no correlation in the behavior between elastic and inelastic forces and strains, the incremental shear forces and incremental torsional moments were analyzed in terms of their corresponding incremental drifts and incremental torsional deformations with respect to the yield, unloading, and reloading phases around the maximum edge-frame drift. In the elastic combination of the two dominant modes, the translational drift mainly contributes to the shear force, whereas the torsional deformation contributes significantly to the overall torsional moment. However, this phenomenon is mostly altered in the inelastic response such that the incremental translational drift contributes to both the incremental shear forces and incremental torsional moments. In addition, the given equation is used to account for all phenomena, such as the reduction in torsional eccentricity, degradation of torsional stiffness, and apparent energy generation in an inelastic response.

An Analytical Study of Flange Local Buckling of Horizontally Curved I-Girders for Estimate Resonable Stress Gradient (합리적 응력경도 산정을 위한 수평 곡선 I-형 거더의 플랜지 국부좌굴의 해석적 연구)

  • Kim, Hee-Soo;Lee, Kee-Sei;Lee, Jeong-Hwa;Choi, Jun-Ho;Kang, Young-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6504-6510
    • /
    • 2015
  • Horizontally curved I-girders are subjected to not only bending moments but also torsional moments. The torsional moment of the plate girder is addition of St. Venant torsion and non-uniform torsion. In the flange of I-shaped plate girder, a kind of open-section, the normal stresses is not distributed uniformly due to the non-uniform torsion. Because of that, one of compression flange tip can be yielded faster than the flange of general straight girder. In other words, the flange local buckling strength is decreased when the girder has initial curvature. In this paper, the numerical analysis is conducted to investigate the average stresses in flange for curved girders. The subtended angle and slenderness ratio are taken as parameters.

Strength and Lateral Torsional Behavior of Horizontally Curved Steel I-Girders Subjected to Equal End Moments (양단 균일 모멘트를 받는 수평곡선 I형 강재 거더의 횡-비틀림 거동 및 강도 산정 방안)

  • Lee, Keesei;Lee, Manseop;Choi, Junho;Kang, Youngjong
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • A curved member should resist bending and torsional moments simultaneously even though the primary load is usually supposed to be gravitational load. The torsional moment causes complicate stress state and also can result in early yielding of material to reduce member strength. According to analysis results, the strength of a curved member that has 45 degrees of subtended angle could decrease more than 50% compare to straight girder. Nevertheless, there have been very few of researches related with ultimate strength of curved girders. In this study, various kinds of stiffness about bending, pure torsion and warping were considered with a number of models in order to verify the main factor that affects ultimate behavior of curved girder. Lateral and rotational displacement of curved member were introduced as lateral-torsional-vertical behavior and bending-torsional moment interaction curve was derived. Finally, a strength equation for ultimate moment of horizontally curved steel I-girders subjected to equal end moments based on the interaction curves. The equation could take account of the effect of curvature, unbraced length and sectional properties.

Torsional Strength and Failure Modes of Reinforced Concrete Beams Subjected to Pure Torsion (순수비틀림을 받는 철근콘크리트 보의 비틀림 강도와 파괴모드)

  • Lee, Jung-Yoon;Kim, Sang-Woo;Kim, Ji-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.503-511
    • /
    • 2008
  • This paper presents the results of an analytical and experimental study on the performance of reinforced concrete beams subjected to pure torsion. The main parameters of the experimental tests were amount of torsional reinforcement and the ratio of the transverse torsional reinforcement to the longitudinal torsional reinforcement. The test results indicated that the maximum amount of torsional reinforcement required in ACI 318-05 code underestimated almost twice as much as the observed maximum amount of torsional reinforcement. Comparisons between the tested and calculated torsional behaviors of the 102 beams showed that the torsional failure modes of ACI 318-05 code disagreed with the observed failure modes. In addition, the torsion provisions in ACI 318-05 code overestimate the torsional strength of the RC beams in which relatively large amount of torsional reinforcement were reinforced, while underestimate for the beams with small amount of torsional reinforcement. This discrepancy between the theoretical ultimate torsional strength as given by the ACI 318-05 code and the experimental one can be due to neglecting the tension stiffening effect and the contribution of the torsional strength by concrete.

An Experimental Study on the Behavior of Connections of Thin-Walled Cold-Formed Steel Section Frames (박판 냉간성형형강 골조의 접합부 거동에 관한 실험적 연구)

  • Kwon, Young Bong;Cho, Jong Su;Song, Jun Yeup;Kim, Gap Deuk
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.281-290
    • /
    • 2003
  • A series of connection tests of portal frames which were composed of cold-formed steel studs and rafters was carried out to study the moment-rotation relation, the rotational rigidity, and the yield and the ultimate moment of the connections. The main factors of the tests were the thickness, the shape of the connecting members which were made of mild steel, and the torsional restraints of the test specimens. The test results were compared with those obtained through the non-linear analysis, for verification. The secant stiffness estimated from the experimental moment-rotation curve was proposed for the rotational rigidity of semi-rigid connections, and its validity was verified in the structural frame analysis.

Inelastic Buckling Behavior of I-Beam with Unequal End Moment (불균등 단부 모멘트를 받는 I형강의 비탄성 좌굴거동에 관한 연구)

  • Lee, Dong Sik;Oh, Soon Taek
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.257-265
    • /
    • 2004
  • The aim of this study is to investigate the inelastic buckling behavior of the beams under moment gradient using a line-type finite element method. The method is incorporated the non-uniform yielding of the cross-section caused by the presence of residual stress and accepted model of residual stress so called 'simplified' and 'polynomial' pattern is adopted in this study. The inelastic lateral-torsional buckling results obtained in this study is compared with the buckling results obtained from the design method based on the allowable stress method given in Korean Steel Designers Manual (KSDM 1995). This study have found that the design method in KSDM (1995) is conservative without and with intermediate bracing applied at the mid span of the beam, and there is some scope for improving the provisions of KSDM (1995)

Laterally Unbraced Length for Preventing Inelastic Lateral-Torsional Buckling of High-Strength Steel Beams (고강도 강재보의 비탄성 횡-비틀림좌굴 제어를 위한 횡지지 거리)

  • Park, Chang Hee;Lee, Cheol Ho;Han, Kyu Hong;Kim, Jin Ho;Lee, Seung Eun;Ha, Tae Hyu;Kim, Jin Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.2
    • /
    • pp.115-130
    • /
    • 2013
  • In this study, lateral-torsional buckling (LTB) strength of high-strength H-beams built up from 800MPa tensile-strength steel was experimentally and analytically evaluated according to current lateral stability provisions (KBC 2009, AISC-LRFD 2010). The motivation was to evaluate whether or not current LTB provisions, which were originally developed for ordinary steel with different stress-strain characteristics, are still applicable to high-strength steel. Two sets of compact-section specimens with relatively low (Set A) or high (Set B) warping stiffness were prepared and tested under uniform moment loading. Laterally unbraced lengths of the test specimens were controlled such that inelastic LTB could be induced. All specimens exhibited LTB strength exceeding the minimum limit required by current provisions by a sufficient margin. Moreover, some specimen in Set A reached a rotation capacity required for plastic design, although its laterally unbraced length belonged to the inelastic LTB range. All the test results indicated that extrapolation of current provisions to high-strength steel is conservative. In order to further analyze the test results, the relationship between inelastic moment and laterally unbraced length was also derived in explicit form for both ordinary- and high-strength steel based on the effective tangent modulus of inelastic section. The analytical relationship derived again showed that extrapolation of current laterally unbraced length limit leads to a conservative design in the case of high-strength steel and that the laterally unbraced length to control the inelastic LTB behavior of high-strength steel beam should be specified by including its unique post-yield strain-hardening characteristics.