• Title/Summary/Keyword: 항력저감 설계

Search Result 5, Processing Time 0.016 seconds

Drag Reduced and Power Increased Design of Human Powered Aircraft (인간동력항공기의 항력저감 및 동력증강 설계)

  • Shin, Byung Joon;Jo, Young-Hee;Kim, Hak-Yoon
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.221-229
    • /
    • 2013
  • To achieve the best performance, the concept of drag reduced and power increased Human Power Aircraft(HPA) was presented by analyzing the HPAs in the world. To participate the '2012 HPA competition' in Korea, the streamlined fuselage and the simultaneous use of hands and feet were introduced. Furthermore the CFD analysis and power unit design were performed to verify the concept. In order to make the best use of streamlined fuselage effect, the fuselage shape design is important and to supply the hand power to the power unit, the control system design is important, also the test flight is required for validation.

Wind Tunnel Test of 2D Model for Plasma Flow Control using DBD Plasma Actuator (DBD 플라즈마 구동기를 이용한 2차원 모델의 플라즈마 유동제어 풍동시험)

  • Yun, Su-Hwan;Kim, Tae-Gyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.527-528
    • /
    • 2012
  • DBD (Dielectric Barrier Discharge) plasma actuator was designed for aerodynamic drag reduction using plasma flow control, and the drag reduction was measured by wind-tunnel tests using 2D test model. At the zero wind velocity, the plasma flow control had no effect on the drag reduction because the flow separation and surface friction drag were not occurred. At the wind velocity of 2m/s, 9.7% of drag was reduced by the flow separation control. The drag reduction decreased as the wind velocity increased.

  • PDF

Experimental Investigation of the Drag Coefficient of Porous Road Signs (유공형 도로표지의 항력계수에 대한 실험적 연구)

  • Sung, Hongki;Chong, Kyusoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.71-76
    • /
    • 2018
  • Recently, various technologies have been developed for road facilities to reduce the load, some of which use technologies employing perforated plates for wind load reduction. Currently, there are no regulations concerning the drag coefficient of perforated plates for domestic road facilities. In the United States, the regulations regarding the drag coefficient of perforated plates in the 'Minimum design loads for buildings and other structures' were revised based on the studies of Letchford (2001) and Giannoulis (2012). In this study, a wind tunnel test was carried out to analyze the feasibility of applying regulations involving the perforated plates' drag coefficient. The results of the wind tunnel test and the drag coefficient used in the regulation were compared and analyzed. In addition, the reduction effect of the cross area of road signs calculated by applying the drag coefficient was analyzed. The results of the wind tunnel test and the value of the drag coefficient used in the regulation in the US were found to be very similar. Therefore, it was found that it is possible to apply the formula involving the drag coefficient of the perforated plate to the regulation and that the cross area of the perforated plate used for the post of the road sign is reduced by about 9.45% and that of the horizontal post by about 6.45%.

Fairing Design of Commercial Vehicles for Drag Force Reduction (항력 저감을 위한 지상차량용 페어링 형상설계)

  • Lee, Yonggyu;Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.2
    • /
    • pp.25-32
    • /
    • 2022
  • A cab roof fairing is a device that reduces the drag coefficient of a commercial vehicle, by controlling the resistance of flow separation occurring in the front when the commercial vehicle travels. Commercial vehicles are designed to facilitate aerodynamic resistance that cannot be avoided from the driving direction of the vehicle, because they must structurally load containers in the rear. For this reason, it is closely related to oil costs and environmental pollutants. In this study, the 3D fairing shape was designed based on the Rankine half body theory, and the design results were verified through aerodynamic analysis.

Drag Reduction Effect by a Self-Adjustable Splitter Plate on the Flow over a Circular Cylinder (원형실린더 후류내의 가동형 와류분할판에 의한 항력 감소효과)

  • 박운진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1262-1275
    • /
    • 1993
  • The drag reduction effect of a freely-rotatable splitter plate was experimentally investigated in the 2-D wake behind a circular cylinder. By arranging the splitter plate to be aparted with a certain gap from the cylinder, the splitter plate was able to be aligned itself automatically to the flow direction in the tested range of 6.2$\times$$10^3$$\times$$10^4$. As a result, it was proven that the self-adjustable splitter plate always reduced effectively the drag imposed on the body against any arbitrary flow directions. In a specific range of Reynolds numbers, the drag reduction effect was dependent not only on the length of the splitter plate but also on the gap distance between the plate and the trailing edge of the body. For a splitter plate with a specific length, there existed a unique optimum range of gap distance to obtain successfully the drag reduction effect, however, the optimum range of gap distance was dependent on Reynolds number.