• Title/Summary/Keyword: 항균시너지효과

Search Result 3, Processing Time 0.017 seconds

A Study on Synergy Effect of Antimicrobial Activity on Aroma essential oil (국내허브(석창포)와 에센셜 오일 항균효과)

  • Kim, Ki-Yeon;Yoon, Byung-Ran;Lee, Yeon-Hee
    • Journal of the Korean Society of Fashion and Beauty
    • /
    • v.2 no.3 s.3
    • /
    • pp.19-26
    • /
    • 2004
  • Synergic antibacterial effects of a sweet flag, essential oils, such as geranium, lemongrass, cypress, chamomile roman, tea tree bergamot, lavender and sandal wood, and the combination of sweet flag and essential oils on Streptococcus aureus, Pseudomonas aeruginosa and Candida albicans were observed in this study. As the results of the tests, the growth of Streptococcus aureus, Pseudomonas aeruginosu and Candida albicans were inhibited in the presence of sweet flag and/or the essential oils. Consequently, the sweet flag and all essential oils was proved to have antibacterial ability, and thus, can be applied to cosmetics.

  • PDF

Effect of structural variation of medium chain fatty acids on antibacterial activities against pathogenic bacteria (중쇄지방산의 구조적 차이에 따른 병원성 세균에 대한 항균활성 변화)

  • Ju-Hyeon Choi;Su-Hyeon Son;Hak-Ryul Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.73-80
    • /
    • 2023
  • Broad range of fatty acids were reported to show antimicrobial activities against broad range of microorganisms. However, possible changes of the antibacterial activity of a fatty acid based on structural variations are largely unknown. This study was focused on determination and comparison of the antimicrobial activities of the medium chain fatty acids, based on the position of carboxyl groups on either terminal end, against the representative food-pathogenic bacteria. Over all, mono-carboxyl medium chain fatty acids (MC-MCFA) presented stronger antimicrobial activities against the food-pathogenic bacteria tested including methicillin-resistant Staphylococcus aureus (MRSA) than di-carboxyl medium chain fatty acid (DC-MCFA). In addition, some of MC-MCFA and DC-MCFA showed high possibility to be used as a synergistic adjuvant for both the commercial β-lactam family antibiotics and aminoglycoside family antibiotics against MRSA.

Improved Antibacterial Effect of Blending Essential Oils (블렌딩 에센션오일의 항균효과 증진)

  • Kwon, Pil Seung;Kim, Dae-Jung;Park, Ho
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.3
    • /
    • pp.256-262
    • /
    • 2017
  • Essential oil from herb is known to exert pharmacological effects on the human body. In this study we investigated the antibacterial activity of 4 essential oils (teetree, rosemary, melisa, and lavender), as well as the blended mixture oil of teetree, rosemary, and melisa (TRM) on three bacteria, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Antibacterial analysis was performed using the standard disk diffusion method, and minimum inhibition concentration was determined by the broth microdilution method with different concentrations of essential oils (0.5, 1, 2 and 3 mg/mL). After incubation at $37^{\circ}C$ for 24 h, the antibacterial activity was assessed by measuring the zone of growth inhibition surrounding the disks. Herb oil with the inhibition zones showed varied values ranging from6 to 25 mm. However, the components of herb oil of TRM are as highly active as the teetree oil against pathogens, generating large inhibition zones for both gram negative and positive bacteria (13~22 mm and 8 mm inhibition zones). In the analysis for MIC, TRM showed growth-inhibitory effects at 0.0625% for S. aureus and E. coli, and 1.25% for P. aeruginosa. This result demonstrated that the anti-microbial activity of TRM was greater than a single herb oil, including oxacillin, rosemary, and teetrea. As a single herb oil, both rosemary and teetrea also had an anti-microbial effect by itself, and we can expect that the blended oil mixture may exert a synergistic effect against multidrug resistant bacteria, suggesting its future application in natural preservative agents for health food and cosmetics.