• Title/Summary/Keyword: 항공승무원 피폭

Search Result 5, Processing Time 0.016 seconds

Calculation of Route Doses for Korean-based International Airline Routes using CARI-6 and Estimation of Aircrew Exposure (CARI-6를 이용한 국제선 노선별 선량 및 항공승무원의 피폭선량 평가)

  • Hong, J.H.;Kwon, J.W.;Jung, J.H.;Lee, J.K.
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.2
    • /
    • pp.141-150
    • /
    • 2004
  • Dose rate characteristics of cosmic radiation field at flight altitudes were analyzed and the route doses to the personnels on board due to cosmic-ray were calculated for Korean-based commercial international airline routes using CARI-6. Annual individual doses to aircrew and the collective effective dose of passengers were estimated by applying the calculated route doses to the flight schedules of aircrew and the air travel statistics of Korea. The result shows that the annual doses to aircrew, around 2.62 mSv, exceed the annual dose limit of public and are comparable to doses of the group of workers occupationally exposed. Therefore it is necessary to consider the frequent flyers as well as the aircrew as the occupational exposure group. The annual collective dose to 11 million Korean passengers in 2001 appeared to be 136 man-Sv. The results should be modified when the dose rates of cosmic radiation at high altitude are revised by taking into account the changes in the radiation weighting factors for protons and neutrons as given in ICRP 92.

Preliminary Study on Applicability of Accumulate Personal Neutron Dosimeter for Cosmic-ray Exposure of Aviators (운항승무원의 우주방사선 피폭 평가에 있어 누적형 개인 중성자 선량계의 적용가능성 예비 연구)

  • Kim, Hyeong-Jin;Chang, Byung-Uck;Byun, Jong-In;Song, Myeong Han;Kim, Jung-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.1
    • /
    • pp.44-51
    • /
    • 2013
  • ICRP recommended that cosmic ray exposure to the pilot and cabin crew would be considered as an occupational exposure due to their relatively high exposure. Since 2012 with the Act No. 10908 (Natural radiation management), the guideline of cosmic ray exposure to the pilot was established in Korea. The applicability of the solid-state nuclear track detector for personal dose assessment of pilot and cabin crew was evaluated. Dose linearity and angle dependence of dosimeters to the neutron were evaluated by $^{252}Cf$ neutron emitting source. The track density has a good agreement with the dose ($r^2$=0.99) and highly dependent on the degree of an angular of the dosimeter to the neutron source. In addition, the dosimeters (SSNTD) were exposed to cosmic ray in an aircraft during its cruising for more than two months in collaboration with Airline Pilots Association of Korea. Although the correlation between the track density from aircraft cruising altitude and expected neutron dose is low, however RSNS dosimeter could be used for personal neutron dosimeter. For application of RSNS as a personal dosimeter for pilot and cabin crew, additional studies are required.

A Study on the Reduction of Cosmic Radiation Exposure by Flight Crew (항공승무원의 우주방사선 피폭 저감에 관한 연구)

  • Ahn, Hee-Bok;Kim, Kyu-Wang;Choi, Youn-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • The purpose of this study is to analyze the radiation dose data of the space crew of the flight crew and to present a plan for the health management of the flight crew on the basis of the analysis. The analysis show that the average exposure dose of the flight attendants continued to rise, and the exposure dose of the flight attendants was five(5) times higher than that of the radiation workers. As a way to reduce the effects of cosmic radiation, this paper suggests appropriate personnel allocation by model, balanced allocation of high and low latitude routes by crew according to the aircraft type, and a low altitude flight plan for high latitude flight. This study will help aviation crew members understand cosmic radiation and trust in the company's policies. In the future, it will be necessary to enhance the flight safety of the crew by deriving meaningful results by analyzing data related to cosmic radiation of various routes.

A Research on Improvement Measures for Safety Management of Aviation Cosmic Radiation (항공부문 우주방사선의 안전관리 적용을 위한 개선연구)

  • Choi, Sung-Ho;Lee, Jin;Kim, Hyo-Joong
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.31 no.2
    • /
    • pp.215-236
    • /
    • 2016
  • This paper is related to a study on safety management of cosmic radiation in the aviation area, and as a comprehensive study encompassing not only aviation crew but also aviation traffic users, presents issues on an exposure to the cosmic radiation which authors predict may be intensified in a time to come. Although the government of the Republic of Korea has recently activated regulations related to the cosmic radiation, the following improvement measures are further urged to be carried out not only as a regulatory improvement for pushing ahead with effectiveness but also as a supplementary tool. Firstly, a dose limit corresponding to the international standard needs to be applied. Since the dose limit imposed by the Korean government is improperly higher than the international dose limit of the cosmic radiation, the present dose limit needs to be re-established in a range of "not exceeding the international recommendation". Secondly, a new methodology is needed such that aviation companies observe a yearly effective dose limit of passengers. A fact that only aviation crew is specified but passengers are excluded in the related regulation is based on a recommendation presented by the International Commission on Radiological Protection (ICRP). According to the recommendation, Korean government excluded passengers in the "Cosmic Radiation Safety Requirements for Crew". Among the present aviation regulations, there exists a protection standard for protecting aviation traffic users. However, it presents a damage protection only for ticket-related issues. Since this regulatory weakness provides a cause of endangering national health, the authors believe that an improvement in the regulation is needed without sticking to the recommendation from the ICRP. To this end, new regulations are strongly demanded from aspects of not only legal but also regulatory areas. The dose limit in accordance with the international standard is established. However, at least a minute amount of cosmic radiation is continuously acting on all people of Korea. Since more and higher level of cosmic ration may exist in the aviation space, an improved method of representing the minute amount of cosmic radiation in figures. As a result, a desirable regulation may be established for protecting not only crew but also aviation traffic users from being exposed to the cosmic radiation via a legislation of the desirable regulation.

Developments of Space Radiation Dosimeter using Commercial Si Radiation Sensor (범용 실리콘 방사선 센서를 이용한 우주방사선 선량계 개발)

  • Jong-kyu Cheon;Sunghwan Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.367-373
    • /
    • 2023
  • Aircrews and passengers are exposed to radiation from cosmic rays and secondary scattered rays generated by reactions with air or aircraft. For aircrews, radiation safety management is based on the exposure dose calculated using a space-weather environment simulation. However, the exposure dose varies depending on solar activity, altitude, flight path, etc., so measuring by route is more suggestive than the calculation. In this study, we developed an instrument to measure the cosmic radiation dose using a general-purpose Si sensor and a multichannel analyzer. The dose calculation applied the algorithm of CRaTER (Cosmic Ray Telescope for the Effects of Radiation), a space radiation measuring device of NASA. Energy and dose calibration was performed with Cs-137 662 keV gamma rays at a standard calibration facility, and good dose rate dependence was confirmed in the experimental range. Using the instrument, the dose was directly measured on the international line between Dubai and Incheon in May 2023, and it was similar to the result calculated by KREAM (Korean Radiation Exposure Assessment Model for Aviation Route Dose) within 12%. It was confirmed that the dose increased as the altitude and latitude increased, consistent with the calculation results by KREAM. Some limitations require more verification experiments. However, we confirmed it has sufficient utilization potential as a cost-effective measuring instrument for monitoring exposure dose inside or on personal aircraft.