• Title/Summary/Keyword: 항공기 장착 비행시험

Search Result 56, Processing Time 0.025 seconds

Design and Development of Signal Transmitting POD for Aircraft Application (항공기용 신호 송출 POD의 설계 및 개발)

  • Kim, Jee-heung;Kwak, Young-kil;Kim, Kichul;Park, Joo-rae
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • In this research, we develop an airborne equipment radiating S/C-band signal to a target located at a long distance. RF interface of the equipment comprises band-specific transmitters and an broadband antenna to satisfy EIRP(effective isotropic radiated power) requirements. The equipment is in a shape of a POD like an aircraft fuel tank. The measured weight of the equipment is 119.8 kg, the CG(center of gravity) is 1391.35 mm and the MOI(moment of inertia) are 46.07 ± 0.05(Iyy) kg·㎡, 45.36 ± 0.09(Izz) kg·㎡. All results are found to meet the requirements for aircraft installation. To verify flight safety, EMI(electromagnetic interference) tests (RE102, CE102), environmental tests (high/low temperature operation, altitude), intra-system EMC(electromagnetic compatibility) and HERP(hazards electromagnetic radiation personnel) tests have been conducted and all the test results met the requirements. It is confirmed that the equipment could be mounted on the aircraft by meeting all electrical and mechanical requirements.

DVI cable Improvement for Preventing MFD Abnormal Display of a Rotary-wing Aircraft (회전익 항공기 다기능시현기의 이상시현을 방지하기 위한 DVI 케이블 개선)

  • Kim, Young Mok;Jeong, Sang-Gyu;Cho, Jae Po;Choi, Doo-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.9
    • /
    • pp.782-789
    • /
    • 2018
  • Multi-Function Display (MFD) of Korean Utility Helicopter (KUH) displays image information(navigation, flight, topographical and maintenance information) delivered from Mission Computer (MC) during flight operation. The abnormal display of MFD such as flickering phenomenon was identified in the system development. It was solved by improving the shielding performance of the DVI cable and changing the DVI cable installation path at the first mass production. However, it was occurred again when the aircraft was operated for one or two years after delivery. It was also identified in the evaluation process of the derivative helicopters. Therefore, a comprehensive review of the aircraft system level has been performed to solve the problem of MFD malfunction at first and then a design improvement plan was derived by improving the DVI cable. In this paper, the causes of MFD anomalies are analyzed and also the process of design improvement are summarized. The validity of the improvement has been verified through the DVI cable assembly comparison test, SIL/ground/flight test.

A Study on the Improvement of Pitch Autopilot Flight Control Law (세로축 자동조종 비행제어법칙 개선에 관한 연구)

  • Kim, Chong-Sup;Hwang, Byung-Moon;Lee, Chul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1104-1111
    • /
    • 2008
  • The supersonic advanced trainer based on digital flight-by-wire flight control system uses aircraft flight information such as altitude, calibrated airspeed and angle of attack to calculate flight control law, and this information is measured by IMFP(Integrated Multi-Function Probe) equipment. The information has triplex structure using three IMFP sensors. Final value of informations is selected by mid-value selection logic to have more flight data reliability. As the result of supersonic flight test, pitch oscillation is occurred due to IMFP noise when altitude hold autopilot mode is engaged. This tendency may affect stability and handling quality of an aircraft during autopilot mode. This paper addresses autopilot control law design to remove pitch oscillation and these control laws are verified by non-real time simulation and flight test. Also, pitch response characteristics of pitch attitude hold autopilot mode is improved by upgrading the control law structure and feedback gain tuning during bank turn.

Tracking of ground objects using image information for autonomous rotary unmanned aerial vehicles (자동 비행 소형 무인 회전익항공기의 영상정보를 이용한 지상 이동물체 추적 연구)

  • Kang, Tae-Hwa;Baek, Kwang-Yul;Mok, Sung-Hoon;Lee, Won-Suk;Lee, Dong-Jin;Lim, Seung-Han;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.490-498
    • /
    • 2010
  • This paper presents an autonomous target tracking approach and technique for transmitting ground control station image periodically for an unmanned aerial vehicle using onboard gimbaled(pan-tilt) camera system. The miniature rotary UAV which was used in this study has a small, high-performance camera, improved target acquisition technique, and autonomous target tracking algorithm. Also in order to stabilize real-time image sequences, image stabilization algorithm was adopted. Finally the target tracking performance was verified through a real flight test.

Development of Low-Cost Automatic Flight Control System for an Unmanned Target Drone (무인표적기용 저가형 자동비행시스템 개발)

  • Lee, Jang-Ho;Ryu, Hyeok;Kim, Jae-Eun;Ahn, Iee-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.1
    • /
    • pp.19-26
    • /
    • 2004
  • This paper deals with the automatic flight control system for an unmanned target drone which is operated by an army as an anti-air gun shooting training. By automation of unmanned target drone that is manually operated by external pilot, pilot can reduce workload and an army can reduce the budget. Most UAVs which are developed until today use high-cost sensors as AHRS and IMU to measure the attitude, but those are contradictory for the reduction of budget. This paper says the development of low-cost automatic flight control system which makes possible of automatic flight with low-cost sensors. We have developed the integrated automatic flight control system by integrating electricity module, switching module, monitoring module and RC receiver as an one module. We also prove the performance of automatic flight control system by flight test.

  • PDF

Analysis and Flight Test Verification of T/A-50 Engine Horsepower Extraction Capability (T/A-50 엔진 축마력(Horsepower) 능력 해석 및 비행시험 검증)

  • 이상효;이부일;정주현;이상백
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.105-111
    • /
    • 2006
  • The aircraft engine is to generate thrust for the maneuver of aircraft and to provide the power to the related hydraulic system and electrical system. Since the power provided to the systems is extracted from the high pressure compressor of aircraft engine, the extracted power is called horsepower extraction (HPX). If the HPX provided from the engine is smaller than the HPX required from the related systems, there could be abnormal engine behavior, like engine rollback or stall. Analysis on comparing the required HPX and the engine HPX capability had been performed during the T/A-50 FSD (Full Scale Development) period. The analysis results make the engine schedule changed, and T/A-50 flight test has been performed with the changed engine schedule. The analysis results and changing the engine control schedule were verified to be valid with the flight test results.

Validation of Chimera Grid Method Applied to UMSAPv With Prediction of Carriage Load (장착하중 예측을 통한 UMSAPv에 적용된 중첩 격자 기법 검증)

  • Kang, SeonWook;Ahn, Kyehyun;Lee, Seungsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.10
    • /
    • pp.669-676
    • /
    • 2022
  • In this paper, the carriage load analyses of stores installed on aircraft are conducted to validate the chimera grid method applied to an unstructured CFD solver, UMSAPv. First, the chimera grid method of UMSAPv is verified for the well-known Eglin Wing/Pylon/Finned store problem. Next, an angle of attack sweep of F/A-18C clean configuration is conducted at a subsonic speed. The computed results are compared with the results of the previous study using MSAPv, a structured CFD solver, to show the validity of Umsapv. Finally, the carriage of F/A-18C JDAM is carried out with a chimera grid as well as a single block grid. The computed results are compared with other computational, experimental and the flight tests.

Design Improvement about Abnormal Lighting of Anti-Collision Light for a Rotary-wing Aircraft (회전익 항공기 충돌방지등의 이상점등에 대한 설계 개선)

  • Kim, Young Mok;Seo, Young Jin;Lee, Yoon Woo;Lee, Joo Hyung;Choi, Doo-Hyun
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.79-86
    • /
    • 2019
  • An anti-collision light of a rotary-wing aircraft is used for the purpose of preventing collision during the operation of an aircraft and is a key component to ensure flight safety. The anti-collision lights of the Korean Utility Helicopter (KUH) consist of upper and lower lights, and the power supply of anti-collision lights mounted on the aircraft. The anti-collision light is designed as a dual structure capable of brightness control and selective lighting. During the operation after delivery of the aircraft, abnormal lighting of anti-collision light occurred. In this paper, a comprehensive review of the aircraft system and component level was conducted to solve these phenomena at first. Then, the causes of anti-collision light anomalies were analyzed and the design changes are presented. The validity of design changes has been verified through the component and aircraft system ground/flight test.

A Study on Aircraft Sensitivity Analysis for Supersonic Air-Data Error at Low Altitude (공기정보 오차에 의한 저고도 초음속 영역에서의 민감도 해석에 관한 연구)

  • Kim, Chong-Sup;Hwang, Byung-Moon;Kim, Seong-Youl;Kim, Seong-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.80-87
    • /
    • 2005
  • T-50 supersonic jet trainer aircraft using digital flight-by-wire flight control system receives aircraft flight conditions such as altitude, VCAS(Calibrated Airspeed) and Angle of Attack from IMFP(Integrated Multi-Function Probe). IMFP sensors information have triplex structure using three IMFP sensors. Air-data selection logic is mid-value selection in three information from three IMFP sensors in order to have more reliability. From supersonic flight test at high altitude, air-data information is dropped simultaneously because of supersonic shock wave effect. This error information may affect to aircraft stability and safety in supersonic area at low altitude. This paper propose that sensitivity analysis and HQS(Handling Quality Simulator) pilot simulation in order to analyze flight stability and controllability in supersonic area at low altitude when these information is applied to flight control law.

Calibration and Flight Test Results of Air Data Sensing System using Flush Pressure Ports (플러시 압력공을 사용한 대기자료 측정장치의 교정 및 비행시험 결과)

  • Lee, Chang-Ho;Park, Young-Min;Chang, Byeong-Hee;Lee, Yung-Gyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.7
    • /
    • pp.531-538
    • /
    • 2017
  • A flush air data sensing system, which can predict flight speed, angle of attack, and angle of sideslip of the aircraft is designed and manufactured for a small UAV. Two kinds of flush pressure ports, four ports and five ports, are tapped at the same section of fuselage nose-cone. Calibration pressure data at flush ports are obtained through computations for the total aircraft by using Fluent code. Angle of attack, angle of sideslip, total pressure, and static pressure are represented with 4th-order polynomial function and calibration coefficient matrix is obtained using least square method with calibration pressure data. Flight test showed that flight speed, angle of attack, and sideslip angle predicted by four flush ports and five flush ports compared well with those by five-hole probe installed for data comparison. Especially four flush ports revealed nearly same results as those by five flush ports.