• Title/Summary/Keyword: 항공기 동체 구조물

Search Result 13, Processing Time 0.019 seconds

Analysis of Crashworthiness Characteristics of a Regional Aircraft Fuselage using an Explicit Finite Element Method (외연적 유한요소기법을 활용한 리저널급 항공기 동체 내추락 특성 분석)

  • Park, Ill-Kyung;Kim, Sung-Joon;Hwang, In-Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1070-1079
    • /
    • 2012
  • The impact energy absorbing is a very important characteristic of an aircraft to enhance the survivability of occupants when an aircraft is under the survivable accident such as an emergency landing condition. The impact energy is generally transmitted into the occupant and absorbed through a landing gear, a subfloor (lower structure of fuselage), and a seat. The characteristic of crash energy absorbing of a subfloor depends on the type of an aircraft, a shape of structure, and an applied material. Therefore, the study of crashworthiness characteristics of a subfloor structure is very important work to improve the safety of an aircraft. In this study, a finite element model of a narrow body fuselage section for the 80~90 seats regional aircraft was developed and crash simulation was executed using an explicit finite element analysis. Through survey of the impact energy distribution of each structural part of a fuselage and floor-level acceleration response, the crashworthiness characteristics and performance was evaluated.

항공기에 장착된 POD 연결부의 구조 신뢰성 평가

  • 윤혁중;신규인;박상윤;박재학;김도형;주진원;주영식;전승문
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.10a
    • /
    • pp.101-106
    • /
    • 2003
  • 항공기 외부 장착물인 POD는 전자전 방해장치(ECM, electronic counter measures)로서 전자방해 장비 및 부분 부품인 전ㆍ후방 러그(lug)와 외부 케이스로 이루어져 있다. POD는 항공기 외부 동체 하단부 및 파일런(pylon)에 장착되어 작동하므로 항공기의 운용중 이륙부터 착륙간의 기동에 의한 피로하중을 주로 받게 되므로 POD 부품들에 대한 구조 건전성 확보하기 위해서는 MIL-STD-1530의 요구에 따라 내구성(durability) 및 손상허용설계(damage tolerance design) 의 평가가 요구되고 있다.(중략)

  • PDF

Smart UAV Aft Fuselage Structural Analysis (스마트무인기 후방동체 구조해석)

  • Kim, Jin-Won;Lee, Sang-Uk
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.8-15
    • /
    • 2006
  • In this report Smart UAV structural analysis of the aft fuselage is presented. Aft fuselage needs to have enough strength and stiffness considering loads of the Vertical and Horizontal Stabilizer together. It has a big hole for the purpose of engine exhaust duct on its side body. In addition, much attention is needed in high temperature region due to material strength deterioration.

  • PDF

Design Improvements for Preventing Crack of Equipment Mounting Structure in Rotary Wing Aircraft (회전익 항공기의 장비 장착 지지 구조물의 균열 방지를 위한 설계 개선)

  • Bang, Daehan;Lee, Sook;Lee, Sanghoon;Choi, Sangmin
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.28-35
    • /
    • 2020
  • This paper presents the design improvements made for the crack which is in the mounting structure of the mechanical structure of rotary wing aircraft. The doubler added to the mounting structure of rotary wing aircraft was designed and manufactured based on the load at the development stage, and a crack was found in the surface of doubler at a certain point during the operation of the aircraft. To identify the cause of the crack, the initial deformation of the structure, which may occur as a result of fastening condition, was considered and the dynamic analysis of the natural frequency of the structure comparing to the blade passing frequency of the aircraft were additionally reviewed. As a result of this study, a shim was added to remove the physical gap of the fastening area, and a doubler with thickened reinforcement was installed. The increase of structural strength is shown by reviewing the results of dynamic analysis for the structural verification of the improved design, and the fatigue evaluation complied to the requirement of the aircraft lifetime.

Structural Analysis for Newly Installed Blade Antenna of Rotorcraft (신규 블레이드 안테나 장착을 위한 노후 회전익 항공기 구조 해석 연구)

  • Yu, Jeong-O;Kim, Jae-Yong;Choi, Hang-Suk
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.106-112
    • /
    • 2021
  • In this study, we performed a design and structural analysis of a blade-shaped antenna installation on the rear fuselage of a rotary wing aircraft operated by the military. When the structure is damaged while the aircraft is in operation, it is separated from the aircraft main structure and may collide with the rotor or blades to cause the aircraft to crash. Therefore, structural safety for the modified structure must be secured. The design requirement for the newly installed modified part were established, and the load condition was constructed by applying the load that may occur in the aircraft after the modification. Structure safety for the modified structure was secured by performing structure analysis. To analysis stress and deformation of aircraft structure, we developed finite element model and verified it by using hand calculation method. We confirmed the safety of the modified structure through the final structural integrity analysis.

국내 개발 항공기의 복합재로 적용 사례와 기술 전망

  • Kim, Yeong-Ui;Gang, Gi-Hwan
    • The Journal of Aerospace Industry
    • /
    • s.65
    • /
    • pp.70-88
    • /
    • 2003
  • 필자가 참여했던 쌍발복합재사업, 쌍발복합재항공기사업, SB427 민수용헬기사업, T-50 초음속고등훈력기 사업을 통해 복합재료의 항공기 적용사례를 고찰하면서, 쌍발복합재항공기는 실험용항공기(Experimental Aircraft)이지만 국내 최초의 전복합재항공기(All-composites Aircraft)로서 항공기 구조물이 순전히 복합재료만을 이용하여 설계 및 제작이 가능하다는 것을 보여주었고, 복합재료를 적용 시 어떠한 이점이 있는지를 보여준 예가 되고 있다. SB427 민수용헬기사업은 헬리콥터에서 로터 블레이드와 동체 등 기체구조물 대분에 왜 복합재료를 사용해야 효과적인 지를 잘 보여주고 있다. SB427 개발 사업을 통해 얻을 수 있는 또 다른 점은 민수용 항공기의 경우 구축된 복합재료 인증체계에 따라 복합재구조물을 개발해야 되고 그래야만 마케팅에서 신뢰를 얻을 수 있다는 것이다. T-50 항공기는 국내에서 최초로 개발된 초음속기로 미익 부문에 복합재료가 응용되었다. 양산 항공기의 주구조물에 복합재료가 쓰인 예는 T-50이 첫 번째 인데 T-50에서 얻어진 복합재 적용기술은 앞으로 개발될 고급 군용기와 민수용기에 널리 활용될 것으로 기대된다. 본 논문에서는, 국내 개발 항공기에서의 복합재료 적용이라는 특정 주제를 중심으로 개발 이력과 기술적 조망을 통하여, 정부, 연구소, 업체 간의 유기적이고 체계적인 전략이 필요하다고 사료되며, 이러한 전략을 바탕으로 효율적인 항공 산업을 선점해야 할 것이다.

  • PDF

The study on structural vulnerability analysis of small fixed wing UAV with hard landing (동체 착륙 방식의 소형 고정익 무인항공기 구조 취약점 분석)

  • Jeong, Seong-rok;Kang, Ju-hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.20-25
    • /
    • 2019
  • In this paper, the structural weakness analysis and quality improvement of small fixed wing UAV of the hard landing type were studied. Unlike conventional aircraft, small UAV does not use runways because of its small size. Instead, small UAV use hand launch takeoff and hard landings. This type has many operational advantages because it can take off and land in a narrow space. But, the hard landing has a strong impact on the structure of the UAV and can cause serious damage. In order to analyze the exact cause of this phenomenon, the structural analysis was carried out using the 3D structural analysis program (ABAQUS) to identify the location of the fracture. And to improve the accuracy of the structural analysis, properties of the material were obtained through specimen test. As a result of the analysis, structural weaknesses were identified and improved. Thus, the validity of the study was verified by demonstrating the quality of enhanced structure through a real impact test at a higher level of 1.5 times the maximum impact during operation.

A Study on the Optimization of Aircraft Fuselage Structure using Mixture Amount Method & Genetic Algorithm (혼합물 총량법과 유전자 알고리즘을 이용한 항공기 동체 최적화에 관한 연구)

  • 김형래;박찬우
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.28-34
    • /
    • 2006
  • In general engineering problems, the purpose of an optimization is to get optimal design variables. It is the same problem to fix the total amount of the design variables and to judge the optimal mixing proportions of the design variables. That is to say, we can recompose the engineering problems in the concepts of the mixture amount experiments. The goal of mixture amount method is to get the response surfaces of varying both the mixing proportion of component and the total amount of the mixture. The solution of the aircraft fuselage optimization problem is obtained by the mixture amount method and genetic algorithm. In this study, it is shown that the mixture amount method can be utilized for the aircraft structural optimization problem. Also, this method in this study can be applied for the optimization problems over 12 design variables which is impossible for D-optimal design.

Fatigue Analysis for Newly Installed Blade Antenna of Aging Aircraft (노후 항공기 신규 블레이드 타입 안테나 장착에 따른 피로 해석 연구)

  • Lee, Sang Hoon;Lee, Sook;Choi, Sang Min
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.65-71
    • /
    • 2019
  • In this study, as a part of the aging aircraft performance improvement project for which no design information is provided, a new type of blade antenna is installed on the main part of the aging aircraft, and the method of proving the fatigue life of the main part of the aircraft is reviewed and summarized. There are various methods to prove fatigue life according to the manufacturer and aircraft design conditions. The fatigue life prediction and damage tolerance range of the relevant site were obtained through related regulations and industry examples. From these results, the fatigue life of newly installed antennas around the main parts of the aging aircraft was evaluated and the maintenance period and criteria were set according to the damage tolerance.

A Multiple Crack Propagation Analysis considering Initial Flaw and Stress Order in Riveted Specimens (리벳 시편의 초기결함과 응력배열을 고려한 다중균열진전해석)

  • Kim, Jung-Hoon;Zi, Goang-Seup;Kim, Min-Sung;Kong, Jung-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.326-329
    • /
    • 2010
  • 항공기는 전체 수명동안 무수한 반복하중에 노출되기 때문에, 동체에 피로로 인한 다중균열이 불가피하게 발생하게 된다. 이 다중균열은 기체의 강성을 저하시킬 뿐 만 아니라, 종국적으로는 해당 기체구조의 파단을 야기할 수 있다. 초기 결함과 운용 중에 작용되는 응력 스펙트럼은 구조물의 피로수명에 영향을 끼치며 고려해야 한다. 본 논문에서는 초기결함 특성을 파악하기 위한 등가초기결함크기 분포를 산출하고 리벳 시편의 다중균열모델에 대해서 초기결함과 응력배열을 고려한 해석을 수행하였다.

  • PDF