• Title/Summary/Keyword: 핫-데이터

Search Result 65, Processing Time 0.024 seconds

Development of deep learning structure for complex microbial incubator applying deep learning prediction result information (딥러닝 예측 결과 정보를 적용하는 복합 미생물 배양기를 위한 딥러닝 구조 개발)

  • Hong-Jik Kim;Won-Bog Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.116-121
    • /
    • 2023
  • In this paper, we develop a deep learning structure for a complex microbial incubator that applies deep learning prediction result information. The proposed complex microbial incubator consists of pre-processing of complex microbial data, conversion of complex microbial data structure, design of deep learning network, learning of the designed deep learning network, and GUI development applied to the prototype. In the complex microbial data preprocessing, one-hot encoding is performed on the amount of molasses, nutrients, plant extract, salt, etc. required for microbial culture, and the maximum-minimum normalization method for the pH concentration measured as a result of the culture and the number of microbial cells to preprocess the data. In the complex microbial data structure conversion, the preprocessed data is converted into a graph structure by connecting the water temperature and the number of microbial cells, and then expressed as an adjacency matrix and attribute information to be used as input data for a deep learning network. In deep learning network design, complex microbial data is learned by designing a graph convolutional network specialized for graph structures. The designed deep learning network uses a cosine loss function to proceed with learning in the direction of minimizing the error that occurs during learning. GUI development applied to the prototype shows the target pH concentration (3.8 or less) and the number of cells (108 or more) of complex microorganisms in an order suitable for culturing according to the water temperature selected by the user. In order to evaluate the performance of the proposed microbial incubator, the results of experiments conducted by authorized testing institutes showed that the average pH was 3.7 and the number of cells of complex microorganisms was 1.7 × 108. Therefore, the effectiveness of the deep learning structure for the complex microbial incubator applying the deep learning prediction result information proposed in this paper was proven.

A Study on the traffic flow prediction through Catboost algorithm (Catboost 알고리즘을 통한 교통흐름 예측에 관한 연구)

  • Cheon, Min Jong;Choi, Hye Jin;Park, Ji Woong;Choi, HaYoung;Lee, Dong Hee;Lee, Ook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.58-64
    • /
    • 2021
  • As the number of registered vehicles increases, traffic congestion will worsen worse, which may act as an inhibitory factor for urban social and economic development. Through accurate traffic flow prediction, various AI techniques have been used to prevent traffic congestion. This paper uses the data from a VDS (Vehicle Detection System) as input variables. This study predicted traffic flow in five levels (free flow, somewhat delayed, delayed, somewhat congested, and congested), rather than predicting traffic flow in two levels (free flow and congested). The Catboost model, which is a machine-learning algorithm, was used in this study. This model predicts traffic flow in five levels and compares and analyzes the accuracy of the prediction with other algorithms. In addition, the preprocessed model that went through RandomizedSerachCv and One-Hot Encoding was compared with the naive one. As a result, the Catboost model without any hyper-parameter showed the highest accuracy of 93%. Overall, the Catboost model analyzes and predicts a large number of categorical traffic data better than any other machine learning and deep learning models, and the initial set parameters are optimized for Catboost.

A Study on Touchless Finger Vein Recognition Robust to the Alignment and Rotation of Finger (손가락 정렬과 회전에 강인한 비 접촉식 손가락 정맥 인식 연구)

  • Park, Kang-Ryoung;Jang, Young-Kyoon;Kang, Byung-Jun
    • The KIPS Transactions:PartB
    • /
    • v.15B no.4
    • /
    • pp.275-284
    • /
    • 2008
  • With increases in recent security requirements, biometric technology such as fingerprints, faces and iris recognitions have been widely used in many applications including door access control, personal authentication for computers, internet banking, automatic teller machines and border-crossing controls. Finger vein recognition uses the unique patterns of finger veins in order to identify individuals at a high level of accuracy. This paper proposes new device and methods for touchless finger vein recognition. This research presents the following five advantages compared to previous works. First, by using a minimal guiding structure for the finger tip, side and the back of finger, we were able to obtain touchless finger vein images without causing much inconvenience to user. Second, by using a hot mirror, which was slanted at the angle of 45 degrees in front of the camera, we were able to reduce the depth of the capturing device. Consequently, it would be possible to use the device in many applications having size limitations such as mobile phones. Third, we used the holistic texture information of the finger veins based on a LBP (Local Binary Pattern) without needing to extract accurate finger vein regions. By using this method, we were able to reduce the effect of non-uniform illumination including shaded and highly saturated areas. Fourth, we enhanced recognition performance by excluding non-finger vein regions. Fifth, when matching the extracted finger vein code with the enrolled one, by using the bit-shift in both the horizontal and vertical directions, we could reduce the authentic variations caused by the translation and rotation of finger. Experimental results showed that the EER (Equal Error Rate) was 0.07423% and the total processing time was 91.4ms.

A Study on Design Automation of Cooling Channels in Hot Form Press Die Based on CATIA CAD System (CATIA CAD 시스템 기반 핫폼금형의 냉각수로 설계 자동화에 관한 연구)

  • Kim, Gang-Yeon;Park, Si-Hwan;Kim, Sang-Kwon;Park, Doo-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.147-154
    • /
    • 2018
  • This paper focuses on the development of a support system that can rapidly generate the design data of a hot-form die with cooling channels, commonly known as hot stamping technology. We propose a new process for designing hot-form dies based on our (automated) system, whose main features are derived from the analysis of the design requirements and design process in the current industry. Our design support system consists of two modules, which allow for the generation of a 3D geometry model and its 2D drawings. The module for 3D modeling automation is implemented as a type of CATIA template model based on CATIA V5 Knowledgeware. This module automatically creates a 3D model of a hot-form die, including the cooling channels, that depends on the shape of the forming surface and the number of STEELs (subsets of die product) and cooling channels. It also allows for both the editing of the positions and orientations of the cooling channels and testing for the purpose of satisfying the constraints on the distance between the forming surface and cooling channels. Another module for the auto-generation of the 2D drawings is being developed as a plug-in using CAA (CATIA SDK) and Visual C++. Our system was evaluated using the S/W test based on a user defined scenario. As a result, it was shown that it can generate a 3D model of a hot form die and its 2D drawings with hole tables about 29 times faster than the conventional manual method without any design errors.

Brand Platformization and User Sentiment: A Text Mining Analysis of Nike Run Club with Comparative Insights from Adidas Runtastic (텍스트마이닝을 활용한 브랜드 플랫폼 사용자 감성 분석: 나이키 및 아디다스 러닝 앱 리뷰 비교분석을 중심으로)

  • Hanna Park;Yunho Maeng;Hyogun Kym
    • Knowledge Management Research
    • /
    • v.25 no.1
    • /
    • pp.43-66
    • /
    • 2024
  • In an era where digital technology reshapes brand-consumer interactions, this study examines the influence of Nike's Run Club and Adidas' Runtastic apps on loyalty and advocacy. Analyzing 3,715 English reviews from January 2020 to October 2023 through text mining, and conducting a focused sentiment analysis on 155 'recommend' mentions, we explore the nuances of 'hot loyalty'. The findings reveal Nike as a 'companion' with an emphasis on emotional engagement, versus Runtastic's 'tool' focus on reliability. This underscores the varied consumer perceptions across similar platforms, highlighting the necessity for brands to integrate user preferences and address technical flaws to foster loyalty. Demonstrating how customized technology adaptations impact loyalty, this research offers crucial insights for digital brand strategy, suggesting a proactive approach in app development and management for brand loyalty enhancement