• Title/Summary/Keyword: 핫 스폿 응력

Search Result 2, Processing Time 0.017 seconds

Hot Spot Stress of Concrete-filled Circular Hollow Section N-joints Subjected to Axial Loads (축하중을 받는 콘크리트 충전 원형 강관 N형 이음부의 핫스폿 응력 특성)

  • Kim, In-Gyu;Chung, Chul-Hun;Kim, Young-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.113-120
    • /
    • 2010
  • The use of Concrete filled circular hollow steel section (CFCHS) members in bridge design is a relatively new concept. The most important part of the design and durability of such structures is the design and the construction of the joints. In the design of recently constructed steel-concrete composite bridges using CFCHS truss girders for the main load carrying structure, the fatigue verification of the tubular spatial truss joints was a main issue. Welded CFCHS joints are very sensitive to fatigue because the geometric discontinuities of the welds lead to a high stress concentration. New research done on the fatigue behaviour of such joints has focused on CFCHS N-joints, directly welded, with finite element analysis method. A commercial software, ABAQUS, is adopted to perform the finite element analysis on the N-joints. This paper is main focused on these topics, including hot spot stress.

Application of Fatigue Life Assessment considering Residual Stresses for Various Welded Details (잔류응력을 고려한 피로수명평가법의 적용성 검토(I) - 다양한 용접연결부에 대한 적용 -)

  • Han, Jeong-Woo;Lee, Tak-Kee;Han, Seung-Ho;Kim, Jae-Hoon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.125-129
    • /
    • 2002
  • Authors had developed the model for the fatigue life assessment of welded details considering residual stress and its relaxation. The model consists of three ingredients; a hot-spot stress approach, a residual stress relaxation, and an equivalent stress. The equivalent stress is induced by stress ranges and the ratios between the applied mean stresses and the ultimate stress of material. Once being tuned with two specific fatigue tests by using load carrying cruciform joint, this model can be applied to many kinds of welded details which structural stress concentration factors are different from each other. This paper reports the application of the proposed model for various welded details including cover plate, longitudinal stiffener, gusset and side attachment. From the investigation of predicted results by using the proposed model it was shown that the ambiguous fatigue characteristics of the various details influenced widely by the welding residual stress are clarified, and also the model could be applied to assess fatigue life of general welded structures.

  • PDF