• 제목/요약/키워드: 핫엠보싱

검색결과 22건 처리시간 0.016초

핫엠보싱 충전공정에 관한 수치해석 (Numerical simulation of hot embossing filling)

  • 강태곤;권태헌
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.43-46
    • /
    • 2005
  • Micro molding technology is a promising mass production technology for polymer based microstructures. Mass production technologies such as the micro injection/compression molding, hot embossing, and micro reaction molding are already in use. In the present study, we have developed a numerical analysis system to simulate three-dimensional non-isothermal cavity filling for hot embossing, with a special emphasis on the free surface capturing. Precise free surface capturing has been successfully accomplished with the level set method, which is solved by means of the Runge-Kutta discontinuous Galerkin (RKDG) method. The RKDG method turns out to be excellent from the viewpoint of both numerical stability and accuracy of volume conservation. The Stokes equations are solved by the stabilized finite element method using the equal order tri-linear interpolation function. To prevent possible numerical oscillation in temperature Held we employ the streamline upwind Petrov-Galerkin (SUPG) method. With the developed code we investigated the detailed change of free surface shape in time during the mold filling. In the filling simulation of a simple rectangular cavity with repeating protruded parts, we find out that filling patterns are significantly influenced by the geometric characteristics such as the thickness of base plate and the aspect ratio and pitch of repeating microstructures. The numerical analysis system enables us to understand the basic flow and material deformation taking place during the cavity filling stage in microstructure fabrications.

  • PDF

솔벤트 증기를 이용한 폴리머 마이크로 렌즈의 표면 연마 (Surface Polishing of Polymer Microlens with Solvent Vapor)

  • 김신형;송준엽;이평안;김보현;오영탁;조영학
    • 한국정밀공학회지
    • /
    • 제30권6호
    • /
    • pp.644-649
    • /
    • 2013
  • Today, there are lots of progresses in the field of lens researches, especially in the microlens fabrication. Unlike normal lenses, microlens has been widely used as a role of improving the performance of photonic devices which increase the optical precision, and also used in the fields of the display. In this paper, polymer microlenses with $300{\mu}m$ diameter were replicated through hot-embossing from nickel mold which was fabricated by micro-EDM. After hot-embossing process, the polymer microlenses have a rough surface due to the crater formed by micro-EDM process, which is projected onto the surface of the lenses. The surface of polymer microlenses was polished using solvent vapor to improve the surface roughness of the microlenses without changing their shape. In the experiment, the surface roughness was improved with the processing time and vapor temperature. Also, the roughness improvement was greatly affected by the solubility difference between polymer and solvent.