• 제목/요약/키워드: 합체 도식

검색결과 4건 처리시간 0.017초

건축 평면에서 공간 형상의 구조 체계에 관한 연구 - 부분이 전체를 이루는 합체 도식 개발을 중심으로 - (A Study on the Structural System of Space Configuration in Architectural Plane - Focusing on the Coalesce scheme development for part-whole Process -)

  • 박순매;윤재신
    • 대한건축학회논문집:계획계
    • /
    • 제34권9호
    • /
    • pp.9-20
    • /
    • 2018
  • There are many large and small spaces in the interior of the building, and these spaces are arranged and connected to form a systematic spatial structure. A structure is a collection of several parts to form a whole. In other words, the spatial structure in architecture can be seen as a whole organized and organized as individual unit spaces are gathered together. Therefore, in order to understand the spatial structure, we first need to define the unit spaces that form part, how they are interconnected and arranged, and then understand how and how these unit spaces are organized to form a whole. The main purpose of this study is to study the structural system of space based on the shape information of space on architectural plane. This means interpreting the process and method of how the unit spaces defined as a certain shape on the architectural plane are organized step by step, integrated into a higher level, and eventually integrated into one whole. In this paper, the shape and layout of the unit space are identified in the architectural plan, the connection relation is defined, and expressed in the network form. And suggests a new methodology for interpreting the organizational process in which the following spaces are integrated as a whole. This new methodology is based on human perceptual characteristics. When people recognize an object, they recognize the object partly and completely. We want to explain the relationship between parts of space and the whole according to their characteristics.

상하좌우 대칭으로 분포된 작은 크랙근방에서의 중앙크랙의 역학적 거동

  • 조재웅;이억섭;김상철
    • 대한기계학회논문집
    • /
    • 제14권4호
    • /
    • pp.873-882
    • /
    • 1990
  • 본 연구에서는 작은 크랙이 중앙 크랙선단 주위에 대칭으로 배치 분포되어 있 는 유한 평판의 경우에 대한 것으로, 우선 균일분포하중을 받는 정방형판에 분포크랙 이 있는 경우 분포크랙의 위치에 따른 중앙 크랙 선단에서의 응력확대계수의 변화를 유한요소법으로 해석하여 등응력확대계수 곡선들로 나타냈다. 그리고 크랙들 사이의 상호 간섭에 의해 일어나는 소성영역도 고려하여 그 안정성을 검토하여 보았는데, 특 히 크랙들이 서로 가까와 지면 그 크랙들 간에 상호간섭이 커져 소성영격이 크랙선단 주위에 크게 발생되므로써 크랙들은 쉽게 연결되고 합체로 인한 크랙성장이 되어 파괴 됨을 예측할 수 있고 중앙 크랙선단 주위의 분포크랙의 위치에 따른 소성영역 변화도 유한요소법으로 해석하여 도식적으로 나타냈다.

너비감소 판형 홀다운스프링 집합체의 탄성강성도 평가 (Estimation of the Elastic Stiffness of TW-HDS Assembly)

  • 송기남
    • 대한기계학회논문집A
    • /
    • 제21권1호
    • /
    • pp.180-187
    • /
    • 1997
  • A formula for estimating the elastic stiffness of TW-HDS with a uniformly tapered width from w$_{0}$ to w$_{1}$ over the length, has been analytically derived based on Euler beam theory and Castigliano's theorem. Elastic stiffnesses of the TW-HDSs designed in the same dimensional design spaces as the KOFA HDSs have been estimated from the derived formula, in addition, a sensitivity study on the elastic stiffness of the TW-HDSs has been carried out. Analysis results show that elastic stiffnesses of the TW-HDSs have been by far higher than those of the KOFA HDSs, and that, as the effects of axial and shear force on the elastic stiffness have been 0.15-0.21%, most of the elastic stiffness is attributed to the bending moment. As a result of sensitivity analysis, the elastic stiffness sensitivity at each design variable is quantified and design variables having remarkable sensitivity are identified. Among the design variables, leaf thickness is identified as that of having the most remarkable sensitivity of the elastic stiffness.

판형 홀다운스프링 집합체의 탄성강성도 민감도 평가 (Evaluation of an elastic stiffness sensitivity of leaf type HDS)

  • 송기남
    • 대한기계학회논문집A
    • /
    • 제21권8호
    • /
    • pp.1276-1290
    • /
    • 1997
  • The previous elastic stiffness formulas of leaf type holddown spring assemblies(HDSs) have been corrected and extended to be able to consider the point of taper runout for the TT-HDS and all the strain energies for both the TT-HDS and the TW-HDS based on Euler beam theory and Castigliano'stheorem. The elastic stiffness sensitivity of the leaf type holddown spring assemblies was analyzed using the derived elastic stiffness formulas and their gradient vectors obtained from the mid-point formula. As a result of the sensitivity analysis, the elastic stiffness sensitivity at each design variable is quantified and design variables having remarkable sensitivity are identified. Among the design variables, leaf thickness is identified as that of having the most remarkable sensitivity of the elastic stiffness. In addition, it was found that the sensitivity of the leaf type HDS's elastic stiffness is exponentially correlated to the leaf thickness.