• 제목/요약/키워드: 합성인공신경망

검색결과 2건 처리시간 0.019초

딥러닝의 모형과 응용사례 (Deep Learning Architectures and Applications)

  • 안성만
    • 지능정보연구
    • /
    • 제22권2호
    • /
    • pp.127-142
    • /
    • 2016
  • 딥러닝은 인공신경망(neural network)이라는 인공지능분야의 모형이 발전된 형태로서, 계층구조로 이루어진 인공신경망의 내부계층(hidden layer)이 여러 단계로 이루어진 구조이다. 딥러닝에서의 주요 모형은 합성곱신경망(convolutional neural network), 순환신경망(recurrent neural network), 그리고 심층신뢰신경망(deep belief network)의 세가지라고 할 수 있다. 그 중에서 현재 흥미로운 연구가 많이 발표되어서 관심이 집중되고 있는 모형은 지도학습(supervised learning)모형인 처음 두 개의 모형이다. 따라서 본 논문에서는 지도학습모형의 가중치를 최적화하는 기본적인 방법인 오류역전파 알고리즘을 살펴본 뒤에 합성곱신경망과 순환신경망의 구조와 응용사례 등을 살펴보고자 한다. 본문에서 다루지 않은 모형인 심층신뢰신경망은 아직까지는 합성곱신경망 이나 순환신경망보다는 상대적으로 주목을 덜 받고 있다. 그러나 심층신뢰신경망은 CNN이나 RNN과는 달리 비지도학습(unsupervised learning)모형이며, 사람이나 동물은 관찰을 통해서 스스로 학습한다는 점에서 궁극적으로는 비지도학습모형이 더 많이 연구되어야 할 주제가 될 것이다.

Deep Learning Similarity-based 1:1 Matching Method for Real Product Image and Drawing Image

  • Han, Gi-Tae
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권12호
    • /
    • pp.59-68
    • /
    • 2022
  • 본 논문은 주어진 현품 영상과 도면 영상의 유사도를 비교하여 1:1 검증을 위한 방법을 제시한 것으로, CNN(Convolutional Neural Network) 기반의 딥러닝 모델을 두 개로 결합하여 Siamese Net을 구성하고 현품 영상과 도면 영상(정면도, 좌우 측면도, 평면도 등)을 같은 제품이면 1로 다른 제품이면 0으로 학습하며, 추론은 현품 영상과 도면 영상을 쌍으로 질의하여 해당 쌍이 같은 제품인지 아닌지를 판별하는 딥러닝 모델을 제안한다. 현품 영상과 도면 영상과의 유사도가 문턱 값(Threshold: 0.5) 이상이면 동일한 제품이고, 문턱 값 미만이면 다른 제품이라고 판별한다. 본 연구에서는 질의 쌍으로 동일제품의 현품 영상과 도면 영상이 주어졌을 때(긍정 : 긍정) "동일제품"으로 판별할 정확도는 약 71.8%로 나타났고, 질의 쌍으로 다른 현품 영상과 도면 영상이 주어졌을 때(긍정: 부정) "다른제품"으로 판별할 정확도는 약 83.1%를 나타내었다. 향후 제안한 모델에 파라미터 최적화 연구를 접목하고 데이터 정제 등의 과정을 추가하여 현품 영상과 도면 영상의 매칭 정확도를 높이는 연구를 진행할 예정이다.