• 제목/요약/키워드: 합성곱 신경망

검색결과 539건 처리시간 0.025초

시뮬레이션 데이터 기반으로 학습된 딥러닝 모델을 활용한 지뢰식별연구 (Deep-Learning-Based Mine Detection Using Simulated Data)

  • 전부환;이춘주
    • 한국국방기술학회 논문지
    • /
    • 제5권4호
    • /
    • pp.16-21
    • /
    • 2023
  • 세계적으로 지뢰의 수는 감소하는 추세이지만, 과거에 묻힌 지뢰로 인한 피해는 계속되고 있다. 이에따라 본 연구는 지뢰탐지 장비의 개선과 미래 군인 수의 감소 등으로 인해 발생할 수 있는 문제점, 제한사항에 대한 해결방안을 생각하였다. 현재 지뢰탐지기들에는 데이터 저장 기능이 탑재되어 있지 않아 연구 등을 위한 데이터 구축에 제한사항이 있다. 그리고 실제 환경에서 데이터 구축은 많은 시간과 인력이 들어가게된다. 그래서 본 연구에서는 gprMax 시뮬레이션을 활용하여 데이터를 생성하고, CNN 기반의 경량 모델인 MobileNet을 학습시켰고, 실제 데이터로 검증한 결과 97.35%의 높은 식별율을 볼 수 있었다. 그러므로 딥러닝, 시뮬레이션 등의 기술이 지리탐지 장비 등에 접목되는 가능성을 보고, 미래 발생할 수 있을 문제점을 어느정도 해소하고 우리군이 미래 과학기술군이 되기위한 무기체계 발전의 발판이 되길 기대한다.

  • PDF

다중 입출력 FMCW 레이다를 활용한 합성곱 신경망 기반 사람 동작 인식 시스템 (CNN Based Human Activity Recognition System Using MIMO FMCW Radar)

  • 김준성;심재용;장수림;임승찬;정윤호
    • 한국항행학회논문지
    • /
    • 제28권4호
    • /
    • pp.428-435
    • /
    • 2024
  • 본 논문에서는 다중 입출력 주파수 변조 연속파 (MIMO FMCW; multiple input multiple output frequency modulation continuous wave) 레이다 기반 HAR (human activity recognition) 시스템의 설계 및 구현 결과를 제시하였다. 다중 입력 다중 출력 레이다 센서를 통한 포인트 클라우드 데이터를 활용하여 HAR 시스템을 구현하면 사생활 보호와 함께, 안전성 및 정확성 측면에서 장점이 있다. 본 논문에서는, MIMO FMCW 레이다 센서로부터의 포인트클라우드 데이터 기반 HAR을 위해 PointPillars와 DS-CNN (depthwise separable convolutional neural network)을 기반으로 최적 경량 네트워크를 개발하였다. 경량화된 네트워크를 통해 고해상도 포인트 클라우드 데이터를 처리하여 높은 인식 정확도와 함께 효율성을 달성하였다. 결과적으로, 98.27%의 정확도와 11.27M Macs (multiply-accumulates) 연산 복잡도로 구현 가능함을 확인하였다. 또한, 개발한 모델을 라즈베리파이(Raspberry-Pi) 시스템에 구현하여 최대 8 fps의 속도로 포인트 클라우드 데이터 처리가 가능함을 확인하였다.

CNN-LSTM 딥러닝 기반 캠퍼스 전력 예측 모델 최적화 단계 제시 (Proposal of a Step-by-Step Optimized Campus Power Forecast Model using CNN-LSTM Deep Learning)

  • 김예인;이세은;권용성
    • 한국산학기술학회논문지
    • /
    • 제21권10호
    • /
    • pp.8-15
    • /
    • 2020
  • 딥러닝을 사용한 예측 방법은 동일한 예측 모델과 파라미터를 사용한다 하더라도 데이터셋의 특성에 따라 결과가 일정하지 않다. 예를 들면, 데이터셋 A에 최적화된 예측 모델 X를 다른 특성을 가진 데이터셋 B에 적용하면 데이터셋 A와 같이 좋은 예측 결과를 기대하기 어렵다. 따라서 높은 정확도를 갖는 예측 모델을 구현하기 위해서는 데이터셋의 성격을 고려하여 예측 모델을 최적화하는 것이 필요하다. 본 논문에서는 하루 대학 캠퍼스 전력사용량을 1시간 단위로 예측하기 위해 데이터셋의 특성이 고려된 예측 모델이 도출되는 일련의 방법을 단계적으로 제시한다. 데이터 전처리 과정을 시작으로, 이상치 제거와 데이터셋 분류 과정 그리고 합성곱 신경망과 장기-단기 기억 신경망이 결합된 알고리즘(CNN-LSTM: Convolutional Neural Networks-Long Short-Term Memory Networks) 기반 하이퍼파라미터 튜닝 과정을 소개한다. 본 논문에서 제안하는 예측 모델은, 각 시간별 24개 포인트에서 2%의 평균 절대비율 오차(MAPE: Mean Absolute Percentage Error)를 보인다. 단순히 예측 알고리즘만을 적용한 모델과는 달리, 단계적 방법을 통해 최적화된 예측 모델을 사용하여 단일 전력 입력 변수만을 사용해서 높은 예측 정확도를 도출한다. 이 예측 모델은 모바일 에너지관리시스템(Energy Management System: EMS) 어플리케이션에 적용되어 관리자나 소비자에게 최적의 전력사용 방안을 제시할 수 있으며 전력 사용 효율 개선에 크게 기여할 것으로 기대된다.

멀티모달 맥락정보 융합에 기초한 다중 물체 목표 시각적 탐색 이동 (Multi-Object Goal Visual Navigation Based on Multimodal Context Fusion)

  • 최정현;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권9호
    • /
    • pp.407-418
    • /
    • 2023
  • MultiOn(Multi-Object Goal Visual Navigation)은 에이전트가 미지의 실내 환경 내 임의의 위치에 놓인 다수의 목표 물체들을 미리 정해준 일정한 순서에 따라 찾아가야 하는 매우 어려운 시각적 탐색 이동 작업이다. MultiOn 작업을 위한 기존의 모델들은 행동 선택을 위해 시각적 외관 지도나 목표 지도와 같은 단일 맥락 지도만을 이용할 뿐, 다양한 멀티모달 맥락정보에 관한 종합적인 관점을 활용할 수 없다는 한계성을 가지고 있다. 이와 같은 한계성을 극복하기 위해, 본 논문에서는 MultiOn 작업을 위한 새로운 심층 신경망 기반의 에이전트 모델인 MCFMO(Multimodal Context Fusion for MultiOn tasks)를 제안한다. 제안 모델에서는 입력 영상의 시각적 외관 특징외에 환경 물체의 의미적 특징, 목표 물체 특징도 함께 포함한 멀티모달 맥락 지도를 행동 선택에 이용한다. 또한, 제안 모델은 점-단위 합성곱 신경망 모듈을 이용하여 3가지 서로 이질적인 맥락 특징들을 효과적으로 융합한다. 이 밖에도 제안 모델은 효율적인 이동 정책 학습을 유도하기 위해, 목표 물체의 관측 여부와 방향, 그리고 거리를 예측하는 보조 작업 학습 모듈을 추가로 채용한다. 본 논문에서는 Habitat-Matterport3D 시뮬레이션 환경과 장면 데이터 집합을 이용한 다양한 정량 및 정성 실험들을 통해, 제안 모델의 우수성을 확인하였다.

그라운드-롤 제거를 위한 CNN과 GAN 기반 딥러닝 모델 비교 분석 (Comparison of CNN and GAN-based Deep Learning Models for Ground Roll Suppression)

  • 조상인;편석준
    • 지구물리와물리탐사
    • /
    • 제26권2호
    • /
    • pp.37-51
    • /
    • 2023
  • 그라운드-롤(ground roll)은 육상 탄성파 탐사 자료에서 가장 흔하게 나타나는 일관성 잡음(coherent noise)이며 탐사를 통해 얻고자 하는 반사 이벤트 신호보다 훨씬 큰 진폭을 가지고 있다. 따라서 탄성파 자료 처리에서 그라운드-롤 제거는 매우 중요하고 필수적인 과정이다. 그라운드-롤 제거를 위해 주파수-파수 필터링, 커브릿(curvelet) 변환 등 여러 제거 기술이 개발되어 왔으나 제거 성능과 효율성을 개선하기 위한 방법에 대한 수요는 여전히 존재한다. 최근에는 영상처리 분야에서 개발된 딥러닝 기법들을 활용하여 탄성파 자료의 그라운드-롤을 제거하고자 하는 연구도 다양하게 수행되고 있다. 이 논문에서는 그라운드-롤 제거를 위해 CNN (convolutional neural network) 또는 cGAN (conditional generative adversarial network)을 기반으로 하는 세가지 모델(DnCNN (De-noiseCNN), pix2pix, CycleGAN)을 적용한 연구들을 소개하고 수치 예제를 통해 상세히 설명하였다. 알고리듬 비교를 위해 동일한 현장에서 취득한 송신원 모음을 훈련 자료와 테스트 자료로 나누어 모델을 학습하고, 모델 성능을 평가하였다. 이러한 딥러닝 모델은 현장자료를 사용하여 훈련할 때, 그라운드-롤이 제거된 자료가 필요하므로 주파수-파수 필터링으로 그라운드-롤을 제거하여 정답자료로 사용하였다. 딥러닝 모델의 성능 평가 및 훈련 결과 비교는 정답 자료와의 유사성을 기본으로 상관계수와 SSIM (structural similarity index measure)과 같은 정량적 지표를 활용하였다. 결과적으로 DnCNN 모델이 가장 좋은 성능을 보였으며, 다른 모델들도 그라운드-롤 제거에 활용될 수 있음을 확인하였다.

이미지 타입의 ECG 데이터를 사용한 CNN 모델 기반 부정맥 분류 (CNN Model-based Arrhythmia Classification using Image-typed ECG Data)

  • 방연석;장명수;홍유식;이상석;유준상;이우범
    • 융합신호처리학회논문지
    • /
    • 제24권4호
    • /
    • pp.205-212
    • /
    • 2023
  • 심장 질환 가운데에서 부정맥은 방치할 경우에 뇌졸중, 심장 마비, 심부전과 같은 심각한 합병증이 발생할 수 있기 때문에 지속적이고 정확한 심전도 관리에 의한 건강 상태의 확인은 임상적 치료에 매우 중요한 요소이다. 그러나, 심전도(Electrocardiogram; ECG) 데이터의 정확한 해석은 전적으로 의료 전문가에 의존하기 때문에 부가적인 시간과 비용을 요구한다. 따라서 본 논문에서는 라이프로그 기반의 비정상적인 맥파 파형의 분석을 통한 의료 플랫폼 개발을 목적으로 부정맥 인식 모듈을 제안한다. 제안하는 방법은 ECG 데이터를 시계열 데이터가 아닌 이미지 형식으로 처리하여 시각적 패턴 인식 기술을 적용한 후, CNN 모델을 이용하여 부정맥을 탐지하는 방법을 제안한다. 본 논문에서 제안한 ECG 데이터의 이미지 타입 변환에 의한 CNN 모델의 부정맥 분류의 유효성 검증하기 위해 MIT-BIH 부정맥 데이터셋을 사용한 결과, 97%의 정확도를 보였다.

CCTV 영상 기반 강우강도 산정을 위한 실환경 실험 자료 중심 적정 강우 이미지 DB 구축 방법론 개발 (Rainfall image DB construction for rainfall intensity estimation from CCTV videos: focusing on experimental data in a climatic environment chamber)

  • 변종윤;전창현;김현준;이재준;박헌일;이진욱
    • 한국수자원학회논문집
    • /
    • 제56권6호
    • /
    • pp.403-417
    • /
    • 2023
  • 본 연구에서는 CCTV 영상 기반 강우강도 산정 시 필수적으로 요구되는 적정 강우 이미지 DB를 구축하기 위한 방법론을 개발하였다. 먼저, 실환경에서 불규칙적이고 높은 변동성을 보일 수 있는 변수들(바람으로 인한 빗줄기의 변동성, 녹화 환경에서 포함되는 움직이는 객체, 렌즈 위의 흐림 현상 등)에 대한 통제가 가능한 한국건설생활환경시험연구원 내 기후환경시험실에서 CCTV 영상 DB를 구축하였다. 서로 다른 5개의 실험 조건을 고려하여 이상적 환경에서 총 1,728개의 시나리오를 구성하였다. 본 연구에서는 1,920×1,080 사이즈의 30 fps (frame per second) 영상 36개에 대하여 프레임 분할을 진행하였으며, 총 97,200개의 이미지를 사용하였다. 이후, k-최근접 이웃 알고리즘을 기반으로 산정된 최종 배경과 각 이미지와의 차이를 계산하여 빗줄기 이미지를 분리하였다. 과적합 방지를 위해 각 이미지에 대한 평균 픽셀 값을 계산하고, 설정한 픽셀 임계치보다 큰 자료를 선별하였다. 180×180 사이즈로의 재구성을 위해서 관심영역을 설정하고 10 Pixel 단위로 이동을 진행하여 픽셀 변동성이 최대가 되는 영역을 산정하였다. 합성곱 신경망 모델의 훈련을 위해서 120×120 사이즈로 재변환하고 과적합 방지를 위해 이미지 증강 과정을 거쳤다. 그 결과, 이미지 기반 강우 강도 합성곱 신경망 모델을 통해 산정된 결과값과 우량계에서 취득된 강우자료가 전반적으로 유사한 양상을 보였으며, 모든 강우강도 실험 조건에 대해서 약 92%의 데이터의 PBIAS (percent bias)가 절댓값 범위 10% 이내에 해당하였다. 본 연구의 결과물과 전이학습 등의 방법을 연계하여 기존 실환경 CCTV의 한계점을 개선할 수 있을 것으로 기대된다.

YOLO 알고리즘을 활용한 터널 GPR 이미지 내 강지보재 탐지 (Detection of Steel Ribs in Tunnel GPR Images Based on YOLO Algorithm)

  • 배병규;안재훈;정현준;유창균
    • 한국지반공학회논문집
    • /
    • 제39권7호
    • /
    • pp.31-37
    • /
    • 2023
  • 터널은 지중에 건설되는 구조물이므로 육안으로 터널 강지보재의 위치 등의 확인이 불가능하다. 이에, 터널 유지관리시에는, 일반적으로 GPR 이미지를 활용하여 강지보재 탐지를 수행한다. 인공신경망을 통한 GPR 이미지 분석에 대한 연구는, 주로 지하배관, 도로 손상 등의 탐지에 집중되어 있으며, 강지보재 등의 터널 GPR 데이터를 분석한 사례는 해외와 국내 모두 제한적이다. 본 연구에서는, 합성곱 신경망을 기반으로 하는 1단계 객체인식 알고리즘인 YOLO를 활용하여, GPR 데이터를 바탕으로 한 터널 강지보재의 위치 탐지를 자동화하고, 그 성능을 분석한다. 원본 이미지 데이터는 총 512개이며 원본 이미지 데이터로 이루어진 데이터 세트와 원본 이미지 데이터와 증식기법이 적용된 이미지 데이터를 병합한 2,048개의 데이터로 이루어진 데이터 세트를 해석에 활용하였다. 증식한 데이터를 사용한 모델의 강지보재 누락율(전체 강지보재와 탐지하지 못한 지보재 숫자의 비율)은 0.38%, 원본 데이터만을 활용한 모델의 강지보재 누락율은 7.18%로 나타났다. 따라서, 분석 자동화 측면에서는, 증식기법이 적용된 데이터 세트를 활용하는 것이 더 실용적일 것으로 판단된다.

CNN기반의 학습모델을 활용한 거북목 증후군 자세 교정 시스템 (Turtle Neck Syndrome Posture Correction Service Using CNN-based Learning Model)

  • 한지예;박진호
    • 한국콘텐츠학회논문지
    • /
    • 제20권7호
    • /
    • pp.47-55
    • /
    • 2020
  • 스마트 기기 사용의 증가와 함께 현대인들의 거북목 증후군 발병률이 증가했다. 거북목 증후군은 목의 앞 근육이 길어지고, 위쪽 근육이 짧아져 몸통에 비해 머리가 앞으로 나와 있는 자세이며, 수술이나 약물치료보다 평소의 자세 습관을 고치는 방법이 효과적이다. 따라서 본 논문에서는 실시간으로 거북목 증후군을 유발할 수 있는 자세를 감지하고 경고하는 시스템을 제안한다. 올바른 자세와 거북목 자세의 이미지 데이터들을 수집하여 합성곱 신경망기반의 학습모델을 만든다. 웹캠만을 이용하여 카메라에 들어오는 앉은 자세를 학습모델로 실시간 검증하고, 거북목 자세일 경우 경고음을 발생하여 바른 자세를 앉도록 유도한다. 이 시스템은 평소 자세 습관을 교정하도록 유도하여 거북목증후군을 치료하고 목 디스크와 같은 더 심각한 질병을 예방할 수 있다.

CNN(Convolutional Neural Network) 알고리즘을 활용한 음성신호 중 비음성 구간 탐지 모델 연구 (A Study on a Non-Voice Section Detection Model among Speech Signals using CNN Algorithm)

  • 이후영
    • 융합정보논문지
    • /
    • 제11권6호
    • /
    • pp.33-39
    • /
    • 2021
  • 음성인식 기술은 딥러닝과 결합되며 빠른 속도로 발전하고 있다. 특히 음성인식 서비스가 인공지능 스피커, 차량용 음성인식, 스마트폰 등의 각종 기기와 연결되며 음성인식 기술이 산업의 특정 분야가 아닌 다양한 곳에 활용되고 있다. 이러한 상황에서 해당 기술에 대한 높은 기대 수준을 맞추기 위한 연구 역시 활발히 진행되고 있다. 그중에서 자연어처리(NLP, Natural Language Processing)분야에서 음성인식 인식률에 많은 영향을 주는 주변의 소음이나 불필요한 음성신호를 제거하는 분야에 연구가 필요한 상황이다. 이미 많은 국내외 기업에서 이러한 연구를 위해 최신의 인공지능 기술을 활용하고 있다. 그중에서 합성곱신경망 알고리즘(CNN)을 활용한 연구가 활발하게 진행되고 있다. 본 연구의 목적은 합성곱 신경망을 통해서 사용자의 발화구간에서 비음성 구간을 판별하는 것으로 5명의 발화자의 음성파일(wav)을 수집하여 학습용 데이터를 생성하고 이를 합성곱신경망을 활용하여 음성 구간과 비음성 구간을 판별하는 분류 모델을 생성하였다. 이후 생성된 모델을 통해 비음성 구간을 탐지하는 실험을 진행한 결과 94%의 정확도를 얻었다.