• 제목/요약/키워드: 합성곱 신경망

검색결과 539건 처리시간 0.031초

목조 문화재 영상에서의 변위량 측정을 위한 앙상블 딥러닝 모델 (An Ensemble Deep Learning Model for Measuring Displacement in Cultural Asset images)

  • 강재용;김인기;임현석;곽정환
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.141-143
    • /
    • 2021
  • 본 논문에서는 목조 문화재의 변위량을 감지할 수 있는 앙상블 딥러닝 모델 모델을 제안한다. 우선 총 2개의 서로 다른 사전 학습된 합성 곱 신경망을 사용하여 입력 영상에 대한 심층 특징들을 추출한다. 그 이후 2개의 서로 다른 심층 특징들을 결합하여 하나의 특징 벡터를 생성한다. 그 이후 합쳐진 특징 벡터는 완전 연결 계층의 입력 값으로 들어와서 최종적으로 변위의 심각 단계에 대한 예측을 수행하게 된다. 데이터 셋으로는 충주시 근처의 문화재에 방문해서 수집한 목조 문화재 이미지를 가지고 정상 및 비정상으로 구분한 데이터 셋을 사용하였다. 실험 결과 앙상블 딥러닝 기법을 사용한 모델이 앙상블 기법을 사용하지 않는 모델보다 더 좋은 성능을 나타냄을 확인하였다. 이러한 결과로부터 우리가 제안한 방법이 목재 문화재의 변위량 예측에 있어서 매우 적합함을 보여준다.

  • PDF

PNCC와 robust Mel-log filter bank 특징을 결합한 조류 울음소리 분류 (Bird sounds classification by combining PNCC and robust Mel-log filter bank features)

  • 알자흐라 바디;고경득;고한석
    • 한국음향학회지
    • /
    • 제38권1호
    • /
    • pp.39-46
    • /
    • 2019
  • 본 논문에서는 합성곱 신경망(Convolutional Neural Network, CNN) 구조를 이용하여 잡음 환경에서 음향신호를 분류할 때, 인식률을 높이는 결합 특징을 제안한다. 반면, Wiener filter를 이용한 강인한 log Mel-filter bank와 PNCCs(Power Normalized Cepstral Coefficients)는 CNN 구조의 입력으로 사용되는 2차원 특징을 형성하기 위해 추출됐다. 자연환경에서 43종의 조류 울음소리를 포함한 ebird 데이터베이스는 분류 실험을 위해 사용됐다. 잡음 환경에서 결합 특징의 성능을 평가하기 위해 ebird 데이터베이스를 3종류의 잡음을 이용하여 4개의 다른 SNR (Signal to Noise Ratio)(20 dB, 10 dB, 5 dB, 0 dB)로 합성했다. 결합 특징은 Wiener filter를 적용한 log-Mel filter bank, 적용하지 않은 log-Mel filter bank, 그리고 PNCC와 성능을 비교했다. 결합 특징은 잡음이 없는 환경에서 1.34 % 인식률 향상으로 다른 특징에 비해 높은 성능을 보였다. 추가적으로, 4단계 SNR의 잡음 환경에서 인식률은 shop 잡음 환경과 schoolyard 잡음 환경에서 각각 1.06 %, 0.65 % 향상했다.

Deep learning based Person Re-identification with RGB-D sensors

  • Kim, Min;Park, Dong-Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권3호
    • /
    • pp.35-42
    • /
    • 2021
  • 본 연구에서는 3차원 RGB-D Xtion2 카메라를 이용하여 보행자의 골격좌표를 추출한 결과를 바탕으로 동적인 특성(속도, 가속도)을 함께 고려하여 딥러닝 모델을 통해 사람을 인식하는 방법을 제안한다. 본 논문의 핵심목표는 RGB-D 카메라로 손쉽게 좌표를 추출하고 새롭게 생성한 동적인 특성을 기반으로 자체 고안한 1차원 합성곱 신경망 분류기 모델(1D-ConvNet)을 통해 자동으로 보행 패턴을 파악하는 것이다. 1D-ConvNet의 인식 정확도와 동적인 특성이 정확도에 미치는 영향을 알아보기 위한 실험을 수행하였다. 정확도는 F1 Score를 기준으로 측정하였고, 동적인 특성을 고려한 분류기 모델(JCSpeed)과 고려하지 않은 분류기 모델(JC)의 정확도 비교를 통해 영향력을 측정하였다. 그 결과 동적인 특성을 고려한 경우의 분류기 모델이 그렇지 않은 경우보다 F1 Score가 약 8% 높게 나타났다.

위성 SAR 영상의 지상차량 표적 데이터 셋 및 탐지와 객체분할로의 적용 (A Dataset of Ground Vehicle Targets from Satellite SAR Images and Its Application to Detection and Instance Segmentation)

  • 박지훈;최여름;채대영;임호;유지희
    • 한국군사과학기술학회지
    • /
    • 제25권1호
    • /
    • pp.30-44
    • /
    • 2022
  • The advent of deep learning-based algorithms has facilitated researches on target detection from synthetic aperture radar(SAR) imagery. While most of them concentrate on detection tasks for ships with open SAR ship datasets and for aircraft from SAR scenes of airports, there is relatively scarce researches on the detection of SAR ground vehicle targets where several adverse factors such as high false alarm rates, low signal-to-clutter ratios, and multiple targets in close proximity are predicted to degrade the performances. In this paper, a dataset of ground vehicle targets acquired from TerraSAR-X(TSX) satellite SAR images is presented. Then, both detection and instance segmentation are simultaneously carried out on this dataset based on the deep learning-based Mask R-CNN. Finally, this paper shows the future research directions to further improve the performances of detecting the SAR ground vehicle targets.

합성곱신경망을 이용한 보정 위성강수자료 강우-유출 성능 평가 (Assessment of rainfall-runoff performance using corrected satellite precipitation products by convolutional neural network)

  • 김영훈;레수안히엔;정성호;이기하
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.65-65
    • /
    • 2023
  • 최근 기후변화로 인해 홍수, 가뭄 등 수재해가 세계 곳곳에서 빈번하게 발생하고 있다. 이로 인해 정확한 강우-유출 해석의 중요도는 높아지고 있으며 강우-유출 해석에 따라 수자원 관리 및 계획수립의 정도가 달라질 수 있다. 본 연구 대상 지역인 메콩강 유역은 중국과 동남아시아 5개국(라오스, 태국, 미얀마, 베트남, 캄보디아)을 관통하는 국가공유하천으로 기초자료의 획득이 어렵고 국가별로 구축된 자료가 질적, 양적 품질이 상이하여 수문해석에서의 기초자료로 사용하기에 불확실성이 있다. 최근 기술의 발달로 글로벌 격자형 강수자료 획득이 용이함에 있어 미계측 대유역에서의 다양한 연구들이 수행되고 있지만, 지점강수자료와 시·공간적 오차로 인한 불확실성을 내포하고 있다. 이에 본 연구에서는 글로벌 격자형 강수자료의 적용성을 평가하기 위하여 지점 격자형 강수자료(APHRODITE)와 4개의 위성강수자료(CHIRPS, CMORPH, PERSIANN-CDR, TRMM)를 수집하고 합성곱 신경망 모형인 ConvAE 기법을 이용하여 위성강수자료의 시·공간 편의 보정을 수행하였다. 또한, 하천 수위에 대한 장기간 정보 수집이 가능한 메콩강 본류 4개 관측소(Luang Prabang, Pakse, Stung Treng, Kratie)를 선정하였으며 SWAT 모형을 이용하여 매개변수 보정(2004~2013)과 격자형 강수자료의 보정 전·후의 유출모의(2014~2015) 결과를 비교·분석하였다. 격자형 강우를 이용한 보정 및 유출 분석 결과 4개의 위성강수자료 모두 성능이 향상되었으며 그 중 보정된 TRMM이 가장 우수한 성능을 보여 해당 유역에서의 APHRODITE를 대체할 수 있다고 판단하였다. 따라서 본 연구에서 제시하는 ConvAE를 이용한 보정기법과 이를 이용한 강우-유출 해석은 향후 다양한 격자형 강수자료를 활용한 미계측 대유역에서의 수문해석에서 활용이 가능할 것으로 판단된다.

  • PDF

Edge 분석과 ROI 기법을 활용한 콘크리트 균열 분석 - Edge와 ROI를 적용한 콘크리트 균열 분석 및 검사 - (Edge Detection and ROI-Based Concrete Crack Detection)

  • 박희원;이동은
    • 한국건설관리학회논문집
    • /
    • 제25권2호
    • /
    • pp.36-44
    • /
    • 2024
  • 본 논문에서는 합성곱신경망과 ROI기법을 이용한 콘크리트 균열 분석에 관해 소개한다. 콘크리트 표면, 빔과 같은 구조물은 피로 응력, 주기 부하에 노출되며, 이는 일반적으로 구조물의 표면에서 미세한 수준에서 시작되는 균열을 야기한다. 구조물의 균열은 안정성을 저하시키고 구조물의 견고함을 감소시킨다. 조기 발견을 통해 손상 및 고장 가능성을 방지하기 위한 예방 조치를 취할 수 있다. 일반적으로 수동 검사 결과는 품질이 좋지 않고, 대규모 기반 시설의 경우 접근이 어려우며, 균열을 정확하게 감지하기 어렵다. 이러한 수동검사의 자동화는 기존 방식의 한계를 해결할 수 있기 때문에 컴퓨터 비전 기반의 연구들이 수행되었다. 하지만 다양한 유형의 균열이나, 열화상 카메라 등을 이용한 연구들은 부족한 상태이다. 따라서 본 연에서는 콘크리트 벽의 균열을 자동으로 감지하는 방법론을 개발하여 제시하며, 다음과 같은 연구 내용을 목표로 한다. 첫째, 균열 감지 이미지 기반 분석의 주요 장점인 이미지 처리 기술을 사용하여 기존의 수동 방법과 비교하여 정확도가 향상된 결과 및 정보를 제공한다. 둘째, 강화된 Sobel edge segmentation 기술 및 ROI 기법 기반의 알고리즘을 개발하여 비파괴 시험을 위한 자동 균열 감지 기술을 구현한다.

내시경의 위암과 위궤양 영상을 이용한 합성곱 신경망 기반의 자동 분류 모델 (Convolution Neural Network Based Auto Classification Model Using Endoscopic Images of Gastric Cancer and Gastric Ulcer)

  • 박예랑;김영재;정준원;김광기
    • 대한의용생체공학회:의공학회지
    • /
    • 제41권2호
    • /
    • pp.101-106
    • /
    • 2020
  • Although benign gastric ulcers do not develop into gastric cancer, they are similar to early gastric cancer and difficult to distinguish. This may lead to misconsider early gastric cancer as gastric ulcer while diagnosing. Since gastric cancer does not have any special symptoms until discovered, it is important to detect gastric ulcers by early gastroscopy to prevent the gastric cancer. Therefore, we developed a Convolution Neural Network (CNN) model that can be helpful for endoscopy. 3,015 images of gastroscopy of patients undergoing endoscopy at Gachon University Gil Hospital were used in this study. Using ResNet-50, three models were developed to classify normal and gastric ulcers, normal and gastric cancer, and gastric ulcer and gastric cancer. We applied the data augmentation technique to increase the number of training data and examined the effect on accuracy by varying the multiples. The accuracy of each model with the highest performance are as follows. The accuracy of normal and gastric ulcer classification model was 95.11% when the data were increased 15 times, the accuracy of normal and gastric cancer classification model was 98.28% when 15 times increased likewise, and 5 times increased data in gastric ulcer and gastric cancer classification model yielded 87.89%. We will collect additional specific shape of gastric ulcer and cancer data and will apply various image processing techniques for visual enhancement. Models that classify normal and lesion, which showed relatively high accuracy, will be re-learned through optimal parameter search.

고밀도 그리드 모델과 앵커모델을 이용한 동적 객체검지 향상에 관한 연구 (A Study on Improvement of Dynamic Object Detection using Dense Grid Model and Anchor Model)

  • 윤보른;이선우;최경호;이상민;권장우
    • 한국ITS학회 논문지
    • /
    • 제17권3호
    • /
    • pp.98-110
    • /
    • 2018
  • 본 논문은, 동적인 객체의 인식률 향상을 위해 고밀도 그리드 모델과 앵커 모델을 제안하였다. 두 가지 실험은 수행하여 제안하는 CNN 모델들을 제안하였다. 첫 번째 실험에 있어서, YOLO-v2모델을 KITTI 데이터 셋에 적용시켜 보았고, 고밀도 그리드 모델과 앵커 모델을 기존 YOLO-v2와 비교하였다. 실험에 있어서, 본 논문에서 제안하는 두 가지 모델은 기존의 YOLO-v2모델에 비하여 '어려움' 난이도의 자동차 검지에 있어서 6.26%에서 10.99%까지 우수한 성능을 나타낸 것을 확인하였다. 두 번째 실험에 있어서는 새로운 데이터 셋을 학습하였고, 두 가지 모델은 기존의 YOLO-v2모델보다 22.4%까지 '어려움' 난이도의 자동차 인식률 향상이 있음을 확인할 수 있었다.

폐 결절 검출을 위한 합성곱 신경망의 성능 개선 (Performance Improvement of Convolutional Neural Network for Pulmonary Nodule Detection)

  • 김한웅;김병남;이지은;장원석;유선국
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권5호
    • /
    • pp.237-241
    • /
    • 2017
  • Early detection of the pulmonary nodule is important for diagnosis and treatment of lung cancer. Recently, CT has been used as a screening tool for lung nodule detection. And, it has been reported that computer aided detection(CAD) systems can improve the accuracy of the radiologist in detection nodules on CT scan. The previous study has been proposed a method using Convolutional Neural Network(CNN) in Lung CAD system. But the proposed model has a limitation in accuracy due to its sparse layer structure. Therefore, we propose a Deep Convolutional Neural Network to overcome this limitation. The model proposed in this work is consist of 14 layers including 8 convolutional layers and 4 fully connected layers. The CNN model is trained and tested with 61,404 regions-of-interest (ROIs) patches of lung image including 39,760 nodules and 21,644 non-nodules extracted from the Lung Image Database Consortium(LIDC) dataset. We could obtain the classification accuracy of 91.79% with the CNN model presented in this work. To prevent overfitting, we trained the model with Augmented Dataset and regularization term in the cost function. With L1, L2 regularization at Training process, we obtained 92.39%, 92.52% of accuracy respectively. And we obtained 93.52% with data augmentation. In conclusion, we could obtain the accuracy of 93.75% with L2 Regularization and Data Augmentation.

Atrous Convolution과 Grad-CAM을 통한 손 끝 탐지 (Fingertip Detection through Atrous Convolution and Grad-CAM)

  • 노대철;김태영
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제25권5호
    • /
    • pp.11-20
    • /
    • 2019
  • 딥러닝 기술의 발전으로 가상 현실이나 증강 현실 응용에서 사용하기 적절한 사용자 친화적 인터페이스에 관한 연구가 활발히 이뤄지고 있다. 본 논문은 사용자의 손을 이용한 인터페이스를 지원하기 위하여 손 끝 좌표를 추적하여 가상의 객체를 선택하거나, 공중에 글씨나 그림을 작성하는 행위가 가능하도록 딥러닝 기반 손 끝 객체 탐지 방법을 제안한다. 입력 영상에서 Grad-CAM으로 해당 손 끝 객체의 대략적인 부분을 잘라낸 후, 잘라낸 영상에 대하여 Atrous Convolution을 이용한 합성곱 신경망을 수행하여 손 끝의 위치를 찾는다. 본 방법은 객체의 주석 전처리 과정을 별도로 요구하지 않으면서 기존 객체 탐지 알고리즘 보다 간단하고 구현하기에 쉽다. 본 방법을 검증하기 위하여 Air-Writing 응용을 구현한 결과 평균 81%의 인식률과 76 ms 속도로 허공에서 지연 시간 없이 부드럽게 글씨 작성이 가능하여 실시간으로 활용 가능함을 알 수 있었다.