• Title/Summary/Keyword: 합성곱 신경망

Search Result 539, Processing Time 0.026 seconds

Prediction of aerodynamics using VGG16 and U-Net (VGG16 과 U-Net 구조를 이용한 공력특성 예측)

  • Bo Ra, Kim;Seung Hun, Lee;Seung Hyun, Jang;Gwang Il, Hwang;Min, Yoon
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.109-116
    • /
    • 2022
  • The optimized design of airfoils is essential to increase the performance and efficiency of wind turbines. The aerodynamic characteristics of airfoils near the stall show large deviation from experiments and numerical simulations. Hence, it is needed to perform repetitive analysis of various shapes near the stall. To overcome this, the artificial intelligence is used and combined with numerical simulations. In this study, three types of airfoils are chosen, which are S809, S822 and SD7062 used in wind turbines. A convolutional neural network model is proposed in the combination of VGG16 and U-Net. Learning data are constructed by extracting pressure fields and aerodynamic characteristics through numerical analysis of 2D shape. Based on these data, the pressure field and lift coefficient of untrained airfoils are predicted. As a result, even in untrained airfoils, the pressure field is accurately predicted with an error of within 0.04%.

Non-intrusive Calibration for User Interaction based Gaze Estimation (사용자 상호작용 기반의 시선 검출을 위한 비강압식 캘리브레이션)

  • Lee, Tae-Gyun;Yoo, Jang-Hee
    • Journal of Software Assessment and Valuation
    • /
    • v.16 no.1
    • /
    • pp.45-53
    • /
    • 2020
  • In this paper, we describe a new method for acquiring calibration data using a user interaction process, which occurs continuously during web browsing in gaze estimation, and for performing calibration naturally while estimating the user's gaze. The proposed non-intrusive calibration is a tuning process over the pre-trained gaze estimation model to adapt to a new user using the obtained data. To achieve this, a generalized CNN model for estimating gaze is trained, then the non-intrusive calibration is employed to adapt quickly to new users through online learning. In experiments, the gaze estimation model is calibrated with a combination of various user interactions to compare the performance, and improved accuracy is achieved compared to existing methods.

Crack Detection Technology Based on Ortho-image Using Convolutional Neural Network (합성곱 신경망을 이용한 정사사진 기반 균열 탐지 기법)

  • Jang, Arum;Jeong, Sanggi;Park, Jinhan;, Kang Chang-hoon;Ju, Young K.
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.2
    • /
    • pp.19-27
    • /
    • 2022
  • Visual inspection methods have limitations, such as reflecting the subjective opinions of workers. Moreover, additional equipment is required when inspecting the high-rise buildings because the height is limited during the inspection. Various methods have been studied to detect concrete cracks due to the disadvantage of existing visual inspection. In this study, a crack detection technology was proposed, and the technology was objectively and accurately through AI. In this study, an efficient method was proposed that automatically detects concrete cracks by using a Convolutional Neural Network(CNN) with the Orthomosaic image, modeled with the help of UAV. The concrete cracks were predicted by three different CNN models: AlexNet, ResNet50, and ResNeXt. The models were verified by accuracy, recall, and F1 Score. The ResNeXt model had the high performance among the three models. Also, this study confirmed the reliability of the model designed by applying it to the experiment.

Research Trends in CNN-based Fingerprint Classification (CNN 기반 지문분류 연구 동향)

  • Jung, Hye-Wuk
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.653-662
    • /
    • 2022
  • Recently, various researches have been made on a fingerprint classification method using Convolutional Neural Networks (CNN), which is widely used for multidimensional and complex pattern recognition such as images. The CNN-based fingerprint classification method can be executed by integrating the two-step process, which is generally divided into feature extraction and classification steps. Therefore, since the CNN-based methods can automatically extract features of fingerprint images, they have an advantage of shortening the process. In addition, since they can learn various features of incomplete or low-quality fingerprints, they have flexibility for feature extraction in exceptional situations. In this paper, we intend to identify the research trends of CNN-based fingerprint classification and discuss future direction of research through the analysis of experimental methods and results.

Development of AI oxygen temperature measurement technology using hyperspectral optical visualization technology (초분광 광학가시화 기술을 활용한 인공지능 산소온도 측정기술 개발)

  • Jeong Hun Lee;Bo Ra Kim;Seung Hun Lee;Joon Sik Kim;Min Yoon;Gyeong Rae Cho
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.103-109
    • /
    • 2023
  • This research developed a measurement technique that can measure the oxygen temperature inside a high temperature furnace. Instead of measuring only changes in frequency components within a small range used in the existing variable laser absorption spectroscopy, laser spectroscopy technology was used to spread out wavelength of the light source passing through the gas Based on a total of 20,000 image data, research was conducted to predict the temperature of a high-temperature furnace using CNN with black and white images in the form of spectral bands by temperature of 25 to 800 degrees. The optimal model was found through Hyper parameter optimization, R2 score is 0.89, and the accuracy of the test data is 88.73%. Based on this research, it is expected that concentration measurement and air-fuel ratio control technology can be applied.

Pixel-level prediction of velocity vectors on hull surface based on convolutional neural network (합성곱 신경망 기반 선체 표면 유동 속도의 픽셀 수준 예측)

  • Jeongbeom Seo;Dayeon Kim;Inwon Lee
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.18-25
    • /
    • 2023
  • In these days, high dimensional data prediction technology based on neural network shows compelling results in many different kind of field including engineering. Especially, a lot of variants of convolution neural network are widely utilized to develop pixel level prediction model for high dimensional data such as picture, or physical field value from the sensors. In this study, velocity vector field of ideal flow on ship surface is estimated on pixel level by Unet. First, potential flow analysis was conducted for the set of hull form data which are generated by hull form transformation method. Thereafter, four different neural network with a U-shape structure were conFig.d to train velocity vectors at the node position of pre-processed hull form data. As a result, for the test hull forms, it was confirmed that the network with short skip-connection gives the most accurate prediction results of streamlines and velocity magnitude. And the results also have a good agreement with potential flow analysis results. However, in some cases which don't have nothing in common with training data in terms of speed or shape, the network has relatively high error at the region of large curvature.

Face Frontalization Model with A.I. Based on U-Net using Convolutional Neural Network (합성곱 신경망(CNN)을 이용한 U-Net 기반의 인공지능 안면 정면화 모델)

  • Lee, Sangmin;Son, Wonho;Jin, ChangGyun;Kim, Ji-Hyun;Kim, JiYun;Park, Naeun;Kim, Gaeun;Kwon, Jin young;Lee, Hye Yi;Kim, Jongwan;Oh, Dukshin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.685-688
    • /
    • 2020
  • 안면 인식은 Face ID를 비롯하여 미아 찾기, 범죄자 추적 등의 분야에 도입되고 있다. 안면 인식은 최근 딥러닝을 통해 인식률이 향상되었으나, 측면에서의 인식률은 정면에 비해 특징 추출이 어려우므로 비교적 낮다. 이런 문제는 해당 인물의 정면이 없고 측면만 존재할 경우 안면 인식을 통한 신원확인이 어려워 단점으로 작용될 수 있다. 본 논문에서는 측면 이미지를 바탕으로 정면을 생성함으로써 안면 인식을 적용할 수 있는 상황을 확장하는 인공지능 기반의 안면 정면화 모델을 구현한다. 모델의 안면 특징 추출을 위해 VGG-Face를 사용하며 특징 추출에서 생길 수 있는 정보 손실을 막기 위해 U-Net 구조를 사용한다.

Surface Defect Detection Using CNN (CNN을 활용한 표면 결함 검출)

  • Kang, Hyeon-Woo;Kim, Soo-Bin;Oh, Joon-taek;Lee, Chang-Hyun;Lee, Hyun-Ji;Lee, Sang-Mock;Park, Seung-Bo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.45-46
    • /
    • 2021
  • 본 논문에서는 제조산업의 제품 품질검사의 자동화를 위한 딥러닝 기법을 제안하고 모델의 성능 최적화를 위한 특징 추출 필터의 크기를 비교한다. 이미지 특징을 자동 추출할 수 있는 CNN을 사용하여 전문인력 없이 제품의 표면 결함을 검출하고 제품의 적합성을 판단할 수 있는 이미지 처리 알고리즘을 구축하고 산업 현장에 적용하기 위한 검증 지표로 검출 정확도와 연산속도를 측정하여 결함 검출 알고리즘의 성능을 확인한다. 또한 연산량에 따른 성능 비교를 위해 필터의 크기에 따른 CNN의 성능을 비교하여 결함 검출 알고리즘의 성능을 최적화한다. 본 논문에서는 커널의 크기를 다르게 적용했을 때 빠른 연산으로 높은 정확도의 검출 결과를 얻었다.

  • PDF

Reinforcement of user authentication system of shared kick scooter using autoencoder and variational autoencoder (오토인코더와 변이형 오토인코더를 활용한 공유 킥보드 사용자 인증 시스템 강화)

  • Kang, Yea-Jun;Kim, Hyun-Ji;Lim, Se-Jin;Kim, Won-Woong;Seo, Hwa-Jeong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.643-646
    • /
    • 2021
  • 경찰청에 따르면 도로교통법이 개정된 이후 3개월단 개인형 이동장치(PM)를 단속한 결과 무면허 운전이 3199건에 달하는 것으로 나타났다. 공유 킥보드 서비스의 경우 회원가입을 할 때 운전면허증 취득 여부를 확인하긴 하지만 서비스를 이용할 때는 별도의 확인 절차 없이 대여할 수 있기 때문에 운전면허증을 취득하지 않았어도 대여하는 경우가 발생한다. 본 논문에서는 공유 킥보드 서비스의 보안 취약점을 보완하기 위해 오토인코더와 변이형 오토인코더를 사용한 딥러닝 기반의 공유 킥보드 대리 대여 방지 시스템을 제안한다. 오토인코더는 지문 데이터로부터 특징만을 추출할 수 있어, 사용자의 지문 원본을 서버에게 노출시키지 않을 수 있다. 변이형 오토인코더는 생성형 모델로써, 사용자의 지문 데이터를 증폭 시켜 합성곱 신경망의 성능을 높이는데 도움을 준다. 이러한 오토인코더와 변이형 오토인코더의 특징을 이용해 사용자의 지문을 서버에 노출시키지 않으면서 적은 데이터로 신뢰성 높은 사용자 인증이 가능한 전동 킥보드 대여 시스템을 제안한다.

Efficient Multiple Object Tracking without Appearance Features (외형 특징을 사용하지 않는 효율적인 다중 물체 추적 방법)

  • Lee, Hyemin;Kim, Daijin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.872-874
    • /
    • 2021
  • 본 논문은 외형 특징을 사용하지 않는 효율적인 다중 물체 추적 방법을 제안한다. 본 논문의 목적은 다중 물체 추적 방법이 합성곱 신경망 등의 외형 특징을 사용하지 않고 순수한 모션 모델의 힘으로 도달할 수 있는 최대의 성능을 찾는 것이다. 많은 다중 물체 추적 방법들이 추적 대상들 간의 유사성을 파악하기 위해 외형 특징을 사용한다. 하지만 다양한 외형 특징들을 갖는 방법들은 기본 특징 추출 알고리즘이 다르고, 다중 추적의 성능 향상이 어느 부분으로부터 오는지 정확히 파악할 수 없다. 또한, 각각 다른 매칭 알고리즘과 특징 디자인은 서로 다른 알고리즘의 효과를 순수하게 비교할 수 없다. 이러한 관점에서, 본 연구에서는 어떠한 외형 특징을 사용하지 않고 명확하게 추적 알고리즘의 효율성을 비교할 수 있는 가이드라인을 제시한다. 외형 특징을 사용하지 않고도 실용적으로 사용 가능한 성능에 도달할 수 있음을 공인 MOT2016, MOT2016 데이터셋에 대한 실험을 통해 증명한다. 이러한 방법은 GPU 를 사용하지 않고 200 fps 이상의 높은 속도를 보여 실시간 속도를 요구하는 임베디드 시스템 상의 어플리케이션에 적합하다.