Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.11a
/
pp.95-98
/
2022
아날로그 게이지는 여전히 많은 산업 시설에서 사용되고 있지만, 게이지 값을 사람이 수동으로 읽기 때문에 정확히 측정하기 위해 많은 시간이 소모가 되는 문제점이 있다. 이러한 이유로 최근에는 합성곱 신경망을 사용하여 아날로그 게이지 값을 자동으로 인식하는 연구가 진행되고 있다. 그러나 대부분의 선행연구들은 게이지가 촬영된 영상을 그대로 입력으로 사용하고 있으며, 이러한 방법은 사람이 게이지를 읽는 과정을 고려하였을 때 불필요한 부분이 많다. 본 논문에서는 게이지 전체 이미지를 학습에 사용하지 않고, 게이지의 특정 이미지 패치 기반으로 아날로그 게이지 값을 인식하는 방법을 제안한다. 제안하는 방법은 게이지의 중심, 눈금의 최소, 최대, 지침의 좌표를 기반으로 이미지 패치를 생성하고 채널 축으로 병합하여 학습을 진행하였으며, 최종적으로게이지의 각도를 계산한다. 이는 게이지의 평균 각도 오차를 통해 제안한 방법이 게이지 값을 인식하는데 우수한 성능이 보였으며, 게이지 이미지에 장애물이 있는 경우에도 게이지 값을 인식할 수 있음을 확인하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.11a
/
pp.177-179
/
2022
딥러닝의 발전과 함께 합성곱 신경망 기반의 이미지 내 글자 영역 검출(Scene Text Detection) 방법들이 제안됐다. 그러나 이러한 방법들은 대부분 데이터셋이 제공하는 단어의 위치 정보만을 이용할 뿐 글자 영역이 갖는 고유한 정보인 글자 수는 활용하지 않는다. 따라서 본 논문에서는 글자 수 정보를 학습하여 효과적으로 이미지 내의 글자 영역을 검출하는 모듈을 제안한다. 제안하는 방법은 간단한 합성곱 신경망으로 구성된 이미지 내 글자 영역 검출 모델에 글자 수를 예측하는 모듈을 추가하여 학습을 진행하였다. 글자 영역 검출 성능 평가에 널리 사용되는 ICDAR 2015 데이터셋을 통해 기존 방법 대비 성능이 향상됨을 보였고, 글자 수 정보가 글자 영역을 감지하는 데 유효한 정보임을 확인했다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.76-78
/
2020
본 논문에서는 합성곱 신경망을 이용한 이미지 분류에서 신뢰도와 실제 예측 정확도가 다른 문제점을 해결하기 위하여 변형된 두 가지 목적 함수를 제안하였다. 첫 번째는 기존 교차 엔트로피 함수에 새로이 신뢰도와 정확도의 차이를 더해준 것이고, 두번째는 예측값의 최댓값을 0.5로 제한한 것이다. 새로운 목적 함수를 통해 학습해본 결과 정확도의 차이는 거의 나지 않았고, 신뢰도와 실제 정확도는 매우 근접하게 되는 결과를 얻을 수 있었다.
Proceedings of the Korea Information Processing Society Conference
/
2020.11a
/
pp.73-74
/
2020
사용자 동작 추정이란 이미지 또는 비디오에서 사용자의 관절 위치를 추정하는 과정을 말한다. 기존의 연구들은 사용자의 몸에서 관절의 큰 부분(어깨, 무릎, 골반, 손, 발 등)만을 추정하거나 손의 세부 관절을 별도로 추정 했다. 하지만 특정 분야(수화, 댄스 등)에선 몸짓과 손을 함께 사용하기에 우리는 사용자 몸의 큰 관절과 손의 세부 관절을 같이 추정하는 방법에 대한 연구를 제안한다. 본 논문에서 제안하는 사용자 동작 추정 방법은 Cascades 방법을 이용한 합성곱 신경망 기반 회귀모델을 적용한 방식이다. 손의 관절들은 다른 큰 관절들(어깨, 무릎, 골반 등)보다 작아서 정밀한 추정을 요구하기에 Cascades 방법을 사용해 보다 정밀하게 추정할 수 있다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.280-282
/
2020
최근 사물인터넷(IoT), 자율주행과 같이 기계 간의 통신이 요구되는 서비스가 늘어감에 따라, 기계 임무 수행에 최적화된 데이터의 생성 및 압축에 대한 필요성이 증가하고 있다. 또한, 사물인터넷과 인공지능(AI)이 접목된 기술이 주목을 받으면서 딥러닝 모델에서 추출되는 특징(feature)을 디바이스에서 클라우드로 전송하는 방안에 관한 연구가 진행되고 있으며, 국제 표준화 기구인 MPEG에서는 '기계를 위한 부호화(Video Coding for Machine: VCM)'에 대한 표준 기술 개발을 진행 중이다. 딥러닝으로 특징을 추출하는 가장 대표적인 방법으로는 합성곱 신경망(Convolutional Neural Network: CNN)이 있으며, 오토인코더는 입력층과 출력층의 구조를 동일하게 하여 출력을 가능한 한 입력에 근사시키고 은닉층을 입력층보다 작게 구성하여 차원을 축소함으로써 데이터를 압축하는 딥러닝 기반 이미지 압축 방식이다. 이에 본 논문에서는 이러한 오토인코더의 성질을 이용하여 CNN 기반의 이미지 분류 네트워크의 합성곱 신경망으로부터 추출된 feature에 오토인코더를 적용하여 압축하는 방안을 제안한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2021.06a
/
pp.176-179
/
2021
최근 딥 러닝 기법의 하나인 합성곱 신경망(Convolutional Neural Network, CNN)은 영상 잡음(Noise) 제거 분야에서 전통적인 기법보다 좋은 성능을 나타내고 있지만 학습하는 과정에서 영상 내 디테일한 부분이 손실될 수 있다. 본 논문에서는 웨이블릿 변환(Wavelet Transform)을 기반으로 영상 내 디테일 정보도 같이 학습하여 영상 디테일을 향상하는 잡음 제거 합성곱 신경망 네트워크를 제안한다. 제안하는 네트워크는 디테일 향상 서브 네트워크(Detail Enhancement Subnetwork)와 영상 잡음 추출 서브 네트워크(Noise Extraction Subnetwork)를 이용하게 된다. 실험을 통해 제안하는 방법은 기존 알고리듬보다 디테일 손실 문제를 효과적으로 해결할 수 있었고 객관적 품질 평가인 PSNR(Peak Signal-to-Noise Ratio)와 주관적 품질 비교에서 모두 우수한 결과가 나온 것을 확인하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.680-683
/
2020
오래 전부터 모델 기반 최적화 방법이 이미지 디블러링을 위해 널리 사용되어 왔고, 최근에는 학습 기반 기술이 영상 디블러링에서 좋은 성과를 보이고 있다. 본 논문은 ADMM과 깊은 합성곱 신경망 잡음 제거기 이미지 prior를 이용하여 모델 기반 최적화 방법의 장점과 학습 기반 방법의 장점을 모두 활용할 수 있는 방법을 제안한다. 본 방법을 이용하여 기존 방법보다 더 좋은 디블러링 성능을 얻을 수 있었다.
Proceedings of the Korean Society of Computer Information Conference
/
2023.01a
/
pp.377-380
/
2023
본 논문에서는 합성곱 신경망(Convolutional Neural Networks, CNN)과 탄성왜곡(Elastic Distortion) 기법을 통한 데이터 증강 기법을 활용하여 학습 데이터를 구축하는 프레임워크를 제안한다. 실제 균열 이미지는 정형화된 형태가 없고 복잡한 패턴을 지니고 있어 구하기 어려울 뿐만 아니라, 데이터를 확보할 때 위험한 상황에 노출될 우려가 있다. 이러한 데이터베이스 구축 문제점을 본 논문에서 제안하는 데이터 증강 기법을 통해 비용적, 시간적 측면에서 효율적으로 해결한다. 세부적으로는 DeepCrack의 데이터를 10배 이상 증가하여 실제 균열의 특징을 반영한 메타 데이터를 생성하여 U-net을 학습하였다. 성능을 검증하기 위해 균열 탐지 연구를 진행한 결과, IoU 정확도가 향상되었음을 확인하였다. 데이터를 증강하지 않았을 경우 잘못 예측(FP)된 경우의 비율이 약 25%였으나, 데이터 증강을 통해 3%까지 감소하였음을 확인하였다.
Proceedings of the Korea Information Processing Society Conference
/
2024.05a
/
pp.61-64
/
2024
최근 고성능 컴퓨팅 장치의 수요 증가와 함께, 메모리 내에 연산을 가능하게 하는 하드웨어 구조가 새로이 발표되고 있다. 본 논문은 기존 DRAM 에 계산 유닛을 통합하는 새로운 메모리 내 연산 구조를 제안한다. 특히, 데이터 집약적인 합성곱 신경망 작업을 위해 최적화된 이 구조는 기존 메모리 구조를 사용하면서도 기존 구조에 분기를 추가함으로서 CNN 연산의 속도와 에너지 효율을 향상시킨다. VGG19, AlexNet, ResNet-50 과 같은 다양한 CNN 모델을 활용한 실험 결과, PINN 아키텍처는 기존 연구에 비해 최대 2.95 배까지의 성능 향상을 달성할 수 있음을 확인하였다. 이러한 결과는 PINN 기술이 저장 및 연산 성능의 한계를 극복하고, 머신 러닝과 같은 고급 어플리케이션의 요구를 충족시킬 수 있는 방안임을 시사한다.
Proceedings of the Korea Information Processing Society Conference
/
2024.05a
/
pp.582-585
/
2024
이 연구는 컴퓨팅 자원이 제한된 환경에서 딥러닝 모델의 문제를 해결하기 위해 합성곱 신경망(CNN)에서 동적 가지치기 모델의 적용을 탐구한다. 첫째, 동적 가지치기 모델의 원리와 방법에 대해 기존 방법과의 비교를 소개한다. 둘째, 기존적인 방법 동적 가지치기 모델의 구현 과정 및 결과 분석을 포함한 실험 단계를 자세히 설명한다. 실험 결과는 동적 가지치기 모델이 적절한 훈련에서 모델의 분류 성능을 효과적으로 향상시킬 수 있으며 강력한 일반화 능력을 가지고 있음을 보여준다. 마지막으로 딥러닝 방법과 기존 방법의 차이점과 장단점을 분석하고 요약하여 실제 적용에서 딥러닝 모델 배치에 유용한 탐색과 참고 자료를 제공한다. 이 연구는 딥러닝 분야에서 동적 가지치기 모델의 적용을 추가로 탐색하기 위한 중요한 이론 및 실습 기반을 제공한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.