• Title/Summary/Keyword: 합성곱 오토인코더

Search Result 16, Processing Time 0.022 seconds

Surface Defect Detection System for Steel Products using Convolutional Autoencoder and Image Calculation Methods (합성곱 오토인코더 모델과 이미지 연산 기법을 활용한 가공품 표면 불량 검출 시스템)

  • Kim, Sukchoo;Kwon, Jung Jang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.69-70
    • /
    • 2021
  • 본 논문은 PPM으로 관리되고 있는 자동차 부품 제조 공정에서 검사자의 육안검사 방법을 대체하기 위해 머신비전 및 CNN 기반 불량 검출 시스템으로 제안되었던 방식들의 단점을 개선하기 위하여 기존 머신 비전 기술에 합성곱 오토인코더 모델을 적용하여 단점을 해결하였다. 본 논문에서 제시한 오토인코더를 이용하는 방법은 정상 생산품의 이미지만으로 학습을 진행하고, 학습된 모델은 불량 부위가 포함된 이미지를 입력받아 정상 이미지로 출력한다. 이 방법을 사용하여 불량의 부위와 크기를 알 수 있었으며 불량 여부의 판단은 임계치에 의한 불량 부위의 화소 수 계산으로 판단하였다.

  • PDF

Intrusion Detection Method Using Unsupervised Learning-Based Embedding and Autoencoder (비지도 학습 기반의 임베딩과 오토인코더를 사용한 침입 탐지 방법)

  • Junwoo Lee;Kangseok Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.8
    • /
    • pp.355-364
    • /
    • 2023
  • As advanced cyber threats continue to increase in recent years, it is difficult to detect new types of cyber attacks with existing pattern or signature-based intrusion detection method. Therefore, research on anomaly detection methods using data learning-based artificial intelligence technology is increasing. In addition, supervised learning-based anomaly detection methods are difficult to use in real environments because they require sufficient labeled data for learning. Research on an unsupervised learning-based method that learns from normal data and detects an anomaly by finding a pattern in the data itself has been actively conducted. Therefore, this study aims to extract a latent vector that preserves useful sequence information from sequence log data and develop an anomaly detection learning model using the extracted latent vector. Word2Vec was used to create a dense vector representation corresponding to the characteristics of each sequence, and an unsupervised autoencoder was developed to extract latent vectors from sequence data expressed as dense vectors. The developed autoencoder model is a recurrent neural network GRU (Gated Recurrent Unit) based denoising autoencoder suitable for sequence data, a one-dimensional convolutional neural network-based autoencoder to solve the limited short-term memory problem that GRU can have, and an autoencoder combining GRU and one-dimensional convolution was used. The data used in the experiment is time-series-based NGIDS (Next Generation IDS Dataset) data, and as a result of the experiment, an autoencoder that combines GRU and one-dimensional convolution is better than a model using a GRU-based autoencoder or a one-dimensional convolution-based autoencoder. It was efficient in terms of learning time for extracting useful latent patterns from training data, and showed stable performance with smaller fluctuations in anomaly detection performance.

Compression method of feature based on CNN image classification network using Autoencoder (오토인코더를 이용한 CNN 이미지 분류 네트워크의 feature 압축 방안)

  • Go, Sungyoung;Kwon, Seunguk;Kim, Kyuheon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.280-282
    • /
    • 2020
  • 최근 사물인터넷(IoT), 자율주행과 같이 기계 간의 통신이 요구되는 서비스가 늘어감에 따라, 기계 임무 수행에 최적화된 데이터의 생성 및 압축에 대한 필요성이 증가하고 있다. 또한, 사물인터넷과 인공지능(AI)이 접목된 기술이 주목을 받으면서 딥러닝 모델에서 추출되는 특징(feature)을 디바이스에서 클라우드로 전송하는 방안에 관한 연구가 진행되고 있으며, 국제 표준화 기구인 MPEG에서는 '기계를 위한 부호화(Video Coding for Machine: VCM)'에 대한 표준 기술 개발을 진행 중이다. 딥러닝으로 특징을 추출하는 가장 대표적인 방법으로는 합성곱 신경망(Convolutional Neural Network: CNN)이 있으며, 오토인코더는 입력층과 출력층의 구조를 동일하게 하여 출력을 가능한 한 입력에 근사시키고 은닉층을 입력층보다 작게 구성하여 차원을 축소함으로써 데이터를 압축하는 딥러닝 기반 이미지 압축 방식이다. 이에 본 논문에서는 이러한 오토인코더의 성질을 이용하여 CNN 기반의 이미지 분류 네트워크의 합성곱 신경망으로부터 추출된 feature에 오토인코더를 적용하여 압축하는 방안을 제안한다.

  • PDF

Reinforcement of user authentication system of shared kick scooter using autoencoder and variational autoencoder (오토인코더와 변이형 오토인코더를 활용한 공유 킥보드 사용자 인증 시스템 강화)

  • Kang, Yea-Jun;Kim, Hyun-Ji;Lim, Se-Jin;Kim, Won-Woong;Seo, Hwa-Jeong
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.643-646
    • /
    • 2021
  • 경찰청에 따르면 도로교통법이 개정된 이후 3개월단 개인형 이동장치(PM)를 단속한 결과 무면허 운전이 3199건에 달하는 것으로 나타났다. 공유 킥보드 서비스의 경우 회원가입을 할 때 운전면허증 취득 여부를 확인하긴 하지만 서비스를 이용할 때는 별도의 확인 절차 없이 대여할 수 있기 때문에 운전면허증을 취득하지 않았어도 대여하는 경우가 발생한다. 본 논문에서는 공유 킥보드 서비스의 보안 취약점을 보완하기 위해 오토인코더와 변이형 오토인코더를 사용한 딥러닝 기반의 공유 킥보드 대리 대여 방지 시스템을 제안한다. 오토인코더는 지문 데이터로부터 특징만을 추출할 수 있어, 사용자의 지문 원본을 서버에게 노출시키지 않을 수 있다. 변이형 오토인코더는 생성형 모델로써, 사용자의 지문 데이터를 증폭 시켜 합성곱 신경망의 성능을 높이는데 도움을 준다. 이러한 오토인코더와 변이형 오토인코더의 특징을 이용해 사용자의 지문을 서버에 노출시키지 않으면서 적은 데이터로 신뢰성 높은 사용자 인증이 가능한 전동 킥보드 대여 시스템을 제안한다.

Comparison of Classification and Convolution algorithm in Condition assessment of the Failure Modes in Rotational equipments with varying speed (회전수가 변하는 기기의 상태 진단에 있어서 특성 기반 분류 알고리즘과 합성곱 기반 알고리즘의 예측 정확도 비교)

  • Ki-Yeong Moon;Se-Yun Hwang;Jang-Hyun Lee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.301-301
    • /
    • 2022
  • 본 연구는 운영 조건이 달라짐에 따라 회전수가 변하는 기기의 정상적 가동 여부와 고장 종류를 판별하기 위한 인공지능 알고리즘의 적용을 다루고 있다. 회전수가 변하는 장비로부터 계측된 상태 모니터링 센서의 신호는 비정상(non-stationary)적 특성이 있으므로, 상태 신호의 한계치가 고장 판별의 기준이 되기 어렵다는 점을 해결하고자 하였다. 정상 가동 여부는 이상 감지에 효율적인 오토인코더 및 기계학습 알고리즘을 적용하였으며, 고장 종류 판별에는 기계학습법과 합성곱 기반의 심층학습 방법을 적용하였다. 변하는 회전수와 연계된 주파수의 비정상적 시계열도 적절한 고장 특징 (Feature)로 대변될 수 있도록 시간 및 주파수 영역에서 특징 벡터를 구성할 수 있음을 예제로 설명하였다. 차원 축소 및 카이 제곱 기법을 적용하여 최적의 특징 벡터를 추출하여 기계학습의 분류 알고리즘이 비정상적 회전 신호를 가진 장비의 고장 예측에 활용될 수 있음을 보였다. 이 과정에서 k-NN(k-Nearest Neighbor), SVM(Support Vector Machine), Random Forest의 기계학습 알고리즘을 적용하였다. 또한 시계열 기반의 오토인코더 및 CNN (Convolution Neural Network) 적용하여 이상 감지와 고장진단을 수행한 결과를 비교하여 제시하였다.

  • PDF

Convolutional Autoencoder based Stress Detection using Soft Voting (소프트 보팅을 이용한 합성곱 오토인코더 기반 스트레스 탐지)

  • Eun Bin Choi;Soo Hyung Kim
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.1-9
    • /
    • 2023
  • Stress is a significant issue in modern society, often triggered by external or internal factors that are difficult to manage. When high stress persists over a long term, it can develop into a chronic condition, negatively impacting health and overall well-being. However, it is challenging for individuals experiencing chronic stress to recognize their condition, making early detection and management crucial. Using biosignals measured from wearable devices to detect stress could lead to more effective management. However, there are two main problems with using biosignals: first, manually extracting features from these signals can introduce bias, and second, the performance of classification models can vary greatly depending on the subject of the experiment. This paper proposes a model that reduces bias using convo utional autoencoders, which can represent the key features of data, and enhances generalizability by employing soft voting, a method of ensemble learning, to minimize performance variability. To verify the generalization performance of the model, we evaluate it using LOSO cross-validation method. The model proposed in this paper has demonstrated superior accuracy compared to previous studies using the WESAD dataset.

  • PDF

Agglomerative Hierarchical Clustering Analysis with Deep Convolutional Autoencoders (합성곱 오토인코더 기반의 응집형 계층적 군집 분석)

  • Park, Nojin;Ko, Hanseok
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Clustering methods essentially take a two-step approach; extracting feature vectors for dimensionality reduction and then employing clustering algorithm on the extracted feature vectors. However, for clustering images, the traditional clustering methods such as stacked auto-encoder based k-means are not effective since they tend to ignore the local information. In this paper, we propose a method first to effectively reduce data dimensionality using convolutional auto-encoder to capture and reflect the local information and then to accurately cluster similar data samples by using a hierarchical clustering approach. The experimental results confirm that the clustering results are improved by using the proposed model in terms of clustering accuracy and normalized mutual information.

Research on Normalizing Flow-Based Time Series Anomaly Detection System (정규화 흐름 기반 시계열 이상 탐지 시스템 연구)

  • Younghoon Jeon;Jeonghwan Gwak
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.283-285
    • /
    • 2023
  • 이상 탐지는 데이터에서 일반적인 범주에서 크게 벗어나는 인스턴스 또는 패턴을 식별하는 중요한 작업이다. 본 연구에서는 시계열 데이터의 특징 추출을 위한 비지도 학습 기반 방법과 정규화 흐름의 결합을 통한 이상 탐지 프레임워크를 제안한다. 특징 추출기는 1차원 합성곱 신경망 기반의 오토인코더로 구성되며, 정상적인 시퀀스로만 구성된 훈련 데이터를 압축하고 복원하는 과정을 통해 최적화된다. 추출된 시계열 데이터의 특징 맵은 가능도를 최대화하도록 훈련된 정규화 흐름의 입력으로 사용된다. 이와 같은 방식으로 훈련된 이상 탐지 시스템은 테스트 샘플에 대한 이상치를 계산하며, 최종적으로 임계값과의 비교를 통해 이상 여부를 예측한다. 성능 평가를 위해 시계열 이상 탐지를 위한 공개 데이터셋을 이용하여 공정하게 이상 탐지 성능을 비교하였으며, 실험 결과는 제안하는 정규화 흐름 기법이 시계열 이상 탐지 시스템에 활용될수 있는 잠재성을 시사한다.

  • PDF

Chart-based Stock Price Prediction by Combing Variation Autoencoder and Attention Mechanisms (변이형 오토인코더와 어텐션 메커니즘을 결합한 차트기반 주가 예측)

  • Sanghyun Bae;Byounggu Choi
    • Information Systems Review
    • /
    • v.23 no.1
    • /
    • pp.23-43
    • /
    • 2021
  • Recently, many studies have been conducted to increase the accuracy of stock price prediction by analyzing candlestick charts using artificial intelligence techniques. However, these studies failed to consider the time-series characteristics of candlestick charts and to take into account the emotional state of market participants in data learning for stock price prediction. In order to overcome these limitations, this study produced input data by combining volatility index and candlestick charts to consider the emotional state of market participants, and used the data as input for a new method proposed on the basis of combining variantion autoencoder (VAE) and attention mechanisms for considering the time-series characteristics of candlestick chart. Fifty firms were randomly selected from the S&P 500 index and their stock prices were predicted to evaluate the performance of the method compared with existing ones such as convolutional neural network (CNN) or long-short term memory (LSTM). The results indicated the method proposed in this study showed superior performance compared to the existing ones. This study implied that the accuracy of stock price prediction could be improved by considering the emotional state of market participants and the time-series characteristics of the candlestick chart.

Development of a Reduced Order Model using a Deep Learning-based Manifold-Augmented Approach (매니폴드 데이터 증강기법 기반의 딥러닝 방법론을 적용한 축소 모델 개발)

  • Seongwoo Cheon;Hyejin Kim;Seokhee Ryu;Haeseong Cho;Hakjin Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.5
    • /
    • pp.337-344
    • /
    • 2024
  • This study presents a deep learning-based framework to predict the aerodynamic performance of low Reynolds number airfoils. The framework employs a convolutional neural network (CNN) combined with a variational autoencoder (VAE) to efficiently handle large datasets. Moreover, the signed distance function is used as the network input to represent the airfoil configuration in the image data and parameterize the CNN. A novel generative model based on projection-based manifold learning is proposed to overcome the data mining limitation of computational fluid dynamics which may incur significant computational costs. The interpolation and extrapolation accuracy of the proposed framework is evaluated using the NACA 4-digit airfoil configuration.The results show improved accuracy via data augmentation performed by the proposed generative model.