• 제목/요약/키워드: 합성곱 신경망 모델

검색결과 312건 처리시간 0.032초

이진 분류문제에서의 딥러닝 알고리즘의 활용 가능성 평가 (Feasibility of Deep Learning Algorithms for Binary Classification Problems)

  • 김기태;이보미;김종우
    • 지능정보연구
    • /
    • 제23권1호
    • /
    • pp.95-108
    • /
    • 2017
  • 최근 알파고의 등장으로 딥러닝 기술에 대한 관심이 고조되고 있다. 딥러닝은 향후 미래의 핵심 기술이 되어 일상생활의 많은 부분을 개선할 것이라는 기대를 받고 있지만, 주요한 성과들이 이미지 인식과 자연어처리 등에 국한되어 있고 전통적인 비즈니스 애널리틱스 문제에의 활용은 미비한 실정이다. 실제로 딥러닝 기술은 Convolutional Neural Network(CNN), Recurrent Neural Network(RNN), Deep Boltzmann Machine (DBM) 등 알고리즘들의 선택, Dropout 기법의 활용여부, 활성 함수의 선정 등 다양한 네트워크 설계 이슈들을 가지고 있다. 따라서 비즈니스 문제에서의 딥러닝 알고리즘 활용은 아직 탐구가 필요한 영역으로 남아있으며, 특히 딥러닝을 현실에 적용했을 때 발생할 수 있는 여러 가지 문제들은 미지수이다. 이에 따라 본 연구에서는 다이렉트 마케팅 응답모델, 고객이탈분석, 대출 위험 분석 등의 주요한 분류 문제인 이진분류에 딥러닝을 적용할 수 있을 것인지 그 가능성을 실험을 통해 확인하였다. 실험에는 어느 포르투갈 은행의 텔레마케팅 응답여부에 대한 데이터 집합을 사용하였으며, 전통적인 인공신경망인 Multi-Layer Perceptron, 딥러닝 알고리즘인 CNN과 RNN을 변형한 Long Short-Term Memory, 딥러닝 모형에 많이 활용되는 Dropout 기법 등을 이진 분류 문제에 활용했을 때의 성능을 비교하였다. 실험을 수행한 결과 CNN 알고리즘은 비즈니스 데이터의 이진분류 문제에서도 MLP 모형에 비해 향상된 성능을 보였다. 또한 MLP와 CNN 모두 Dropout을 적용한 모형이 적용하지 않은 모형보다 더 좋은 분류 성능을 보여줌에 따라, Dropout을 적용한 CNN 알고리즘이 이진분류 문제에도 활용될 수 있는 가능성을 확인하였다.

상처와 주름이 있는 지문 판별에 효율적인 심층 학습 비교연구 (A Comparative Study on the Effective Deep Learning for Fingerprint Recognition with Scar and Wrinkle)

  • 김준섭;림빈 보니카;성낙준;홍민
    • 인터넷정보학회논문지
    • /
    • 제21권4호
    • /
    • pp.17-23
    • /
    • 2020
  • 인간의 특성과 관련된 측정 항목을 나타내는 생체정보는 도난이나 분실의 염려가 없으므로 높은 신뢰성을 가진 보안 기술로서 큰 주목을 받고 있다. 이러한 생체정보 중 지문은 본인 인증, 신원 파악 등의 분야에 주로 사용된다. 신원을 파악할 때 지문 이미지에 인증을 수행하기 어려운 상처, 주름, 습기 등의 문제가 있을 경우, 지문 전문가가 전처리단계를 통해 직접 지문에 어떠한 문제가 있는지 파악하고 문제에 맞는 영상처리 알고리즘을 적용해 문제를 해결한다. 이때 지문에 상처와 주름이 있는 지문 영상을 판별해주는 인공지능 소프트웨어를 구현하면 손쉽게 상처나 주름의 여부를 확인할 수 있고, 알맞은 알고리즘을 선정해 쉽게 지문 이미지를 개선할 수 있다. 본 연구에서는 이러한 인공지능 소프트웨어의 개발을 위해 캄보디아 왕립대학교의 학생 1,010명, Sokoto 오픈 데이터셋 600명, 국내 학생 98명의 모든 손가락 지문을 취득해 총 17,080개의 지문 데이터베이스를 구축했다. 구축한 데이터베이스에서 상처나 주름이 있는 경우를 판별하기 위해 기준을 확립하고 전문가의 검증을 거쳐 데이터 어노테이션을 진행했다. 트레이닝 데이터셋과 테스트 데이터셋은 캄보디아의 데이터, Sokoto 데이터로 구성하였으며 비율을 8:2로 설정했다. 그리고 국내 학생 98명의 데이터를 검증 데이터 셋으로 설정했다, 구성된 데이터셋을 사용해 Classic CNN, AlexNet, VGG-16, Resnet50, Yolo v3 등의 다섯 가지 CNN 기반 아키텍처를 구현해 학습을 진행했으며 지문의 상처와 주름 판독에서 가장 좋은 성능을 보이는 모델을 찾는 연구를 수행했다. 다섯가지 아키텍처 중 지문 영상에서 상처와 주름 여부를 가장 잘 판별할 수 있는 아키텍처는 ResNet50으로 검증 결과 81.51%로 가장 좋은 성능을 보였다.