• 제목/요약/키워드: 합성곱 네트워크

검색결과 94건 처리시간 0.034초

Functional Neural Networks 기반의 자기 지도적 영상 잡음 제거 (Functional Neural Networks for Self-supervised Image Denoising)

  • 장영일;조남익
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 추계학술대회
    • /
    • pp.4-7
    • /
    • 2022
  • 기존 합성곱 신경망 기반의 잡음 제거 네트워크들은 학습을 위한 noisy-clean 데이터 쌍을 필요로 한다. 하지만 실제 카메라 잡음의 경우, 잡음에 대한 깨끗한 원본 영상을 얻는 것은 불가능하거나 많은 비용이 소모된다. 따라서 이러한 방법을 해결하기 위하여 원본 영상 없이 잡음 영상만으로만 잡음 제거 네트워크를 학습하는 방법들이 제안되어왔다. 그 중 카메라 잡음 영상을 처리하기 위한 대표적인 방법으로 학습과 추론에서 비대칭적인 downsampling을 사용하는 AP-BSN이 제안되었다. 본 논문에서는 Functional neural network를 AP-BSN 알고리즘에 적용하여 다양한 downsampling ratio에 대응되는 하나의 네트워크를 학습하였다. 이를 통해 기존 hyperparameter로 사용되던 downsampling ratio에 대한 결과를 하나의 네트워크에서 분석 및 확인하였다. 또한 해당 파라미터를 조절함으로써 다양한 잡음 제거 후보들을 추출하고 사용자가 원하는 잡음 제거 정도를 조정할 수 있도록 하였다.

  • PDF

객체 검출을 위한 트랜스포머와 공간 피라미드 풀링 기반의 YOLO 네트워크 (Transformer and Spatial Pyramid Pooling based YOLO network for Object Detection)

  • 권오준;정제창
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 추계학술대회
    • /
    • pp.113-116
    • /
    • 2021
  • 일반적으로 딥러닝 기반의 객체 검출(Object Detection)기법은 합성곱 신경망(Convolutional Neural Network, CNN)을 통해 입력된 영상의 특징(Feature)을 추출하여 이를 통해 객체 검출을 수행한다. 최근 자연어 처리 분야에서 획기적인 성능을 보인 트랜스포머(Transformer)가 영상 분류, 객체 검출과 같은 컴퓨터 비전 작업을 수행하는데 있어 경쟁력이 있음이 드러나고 있다. 본 논문에서는 YOLOv4-CSP의 CSP 블록을 개선한 one-stage 방식의 객체 검출 네트워크를 제안한다. 개선된 CSP 블록은 트랜스포머(Transformer)의 멀티 헤드 어텐션(Multi-Head Attention)과 CSP 형태의 공간 피라미드 풀링(Spatial Pyramid Pooling, SPP) 연산을 기반으로 네트워크의 Backbone과 Neck에서의 feature 학습을 돕는다. 본 실험은 MSCOCO test-dev2017 데이터 셋으로 평가하였으며 제안하는 네트워크는 YOLOv4-CSP의 경량화 모델인 YOLOv4s-mish에 대하여 평균 정밀도(Average Precision, AP)기준 2.7% 향상된 검출 정확도를 보인다.

  • PDF

잔차 신경망과 팽창 합성곱 신경망을 이용한 라이트 필드 각 초해상도 기법 (Light Field Angular Super-Resolution Algorithm Using Dilated Convolutional Neural Network with Residual Network)

  • 김동명;서재원
    • 한국정보통신학회논문지
    • /
    • 제24권12호
    • /
    • pp.1604-1611
    • /
    • 2020
  • 마이크로렌즈 어레이 기반의 카메라로 촬영된 라이트필드 영상은 낮은 공간해상도 및 각해상도로 인하여 실제 사용하기에는 많은 제약이 따른다. 고해상도의 공간해상도 영상은 최근 많이 연구되고 있는 단일 영상 초해상도 기법으로 쉽게 얻을 수 있으나 고해상도의 각해상도 영상은 영상사이에 내재된 시점차 정보를 이용하는 과정에서 왜곡이 발생하여 좋은 품질의 각해상도 영상을 얻기 힘든 문제가 있다. 본 논문에서는 영상 사이에 내재된 시점차 정보를 효과적으로 추출하기 위해서 팽창 합성곱 신경망을 이용하여 초기 특징맵을 추출하고 잔차 신경망으로 새로운 시점 영상을 생성하는 라이트 필드 각 초해상도 영상 기법을 제안한다. 제안하는 네트워크는 기존의 각 초해상도 네트워크와 비교하여 PSNR 및 주관적 화질 비교에서 우수한 성능을 보였다.

지진 이벤트 분류를 위한 정규화 기법 분석 (Analysis of normalization effect for earthquake events classification)

  • 장수;구본화;고한석
    • 한국음향학회지
    • /
    • 제40권2호
    • /
    • pp.130-138
    • /
    • 2021
  • 본 논문에서는 지진 이벤트 분류를 위한 다양한 정규화 기법 분석 및 효과적인 합성곱 신경망(Convolutional Neural Network, CNN)기반의 네트워크 구조를 제안하였다. 정규화 기법은 신경망의 학습 속도를 개선할 뿐만 아니라 잡음에 강인한 모습을 보여 준다. 본 논문에서는 지진 이벤트 분류를 위한 딥러닝 모델에서 입력 정규화 및 은닉 레이어 정규화가 모델에 미치는 영향을 분석하였다. 또한, 적용 은닉 레이어의 구조에 따른 다양한 실험을 통해 효과적인 모델을 도출하였다. 다양한 모의실험 결과 입력 데이터 정규화 및 제1 은닉 레이어에 가중치 정규화를 적용한 모델이 가장 안정적인 성능 향상을 보여 주었다.

Pytorch를 통한 멸종위기종 철새 이미지 분류 AI 시스템 (Image Classification of Endangered Species of Migratory Birds Using Pytorch)

  • 심채영;이준우;추민정;황다희;문유진
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.319-320
    • /
    • 2023
  • 본 논문에서는 합성곱 신경망이 적용된 네트워크를 활용해 전이 학습의 과정을 거친 멸종위기종 철새들의 이미지를 분류하는 시스템의 설계과정과 결과를 제시한다. 연구 방법으로 한국 영랑호를 찾아오는 멸종위기종, 천연기념물인 철새들의 이미지를 학습시켜 "가창오리", "노랑부리백로", "물총새" 이 세 종의 철새들을 매우 정확하게 분류하는 것을 확인하였다. 데이터 예비학습과정에서 train data의 개수를 40개로 진행했을때 약 92%의 정확도를 확인 후, train data의 이미지 개수를 50장으로 늘려 더 높은 정확도를 얻을 수 있었다. 이 시스템은 한국을 방문하는 멸종위기종 철새들을 무분별하게 포획하지 않도록 철새 이미지 분류시 활용 가능하다고 사료된다.

  • PDF

CNN-LSTM 기반의 자율주행 기술 (CNN-LSTM based Autonomous Driving Technology)

  • 박가은;황치운;임세령;장한승
    • 한국전자통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.1259-1268
    • /
    • 2023
  • 본 연구는 딥러닝의 합성곱과 순환신경망 네트워크를 기반으로 시각센서를 이용해 속도(Throttle)와 조향(Steering) 제어 기술을 제안한다. 학습 트랙을 시계, 반시계 방향으로 주행하며 카메라 영상 이미지와 조종 값 데이터를 수집하고 효율적인 학습을 위해 데이터 샘플링, 전처리 과정을 거쳐 Throttle과 Steering을 예측하는 모델을 생성한다. 이후 학습에 사용되지 않은 다른 환경의 테스트 트랙을 통해 검증을 진행하여 최적의 모델을 찾고 이를 CNN(Convolutional Neural Network)과 비교하였다. 그 결과 제안하는 딥러닝 모델의 성능이 뛰어남을 확인했다.

RDB 및 웨이블릿 예측 네트워크 기반 단일 영상을 위한 심층 학습기반 초해상도 기법 (Deep Learning-based SISR (Single Image Super Resolution) Method using RDB (Residual Dense Block) and Wavelet Prediction Network)

  • 응우엔휴중;김응태
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 하계학술대회
    • /
    • pp.5-8
    • /
    • 2019
  • 단일 영상 초해상도 (Single Image Super-Resolution - SISR)기법은 카메라로 획득된 저해상도 영상에 필터 기반의 연산을 적용하여 좋은 화질의 고해상도 영상을 복원하는 과정이다. 최근에 심층 합성곱 신경망 학습의 발전에 따라 단일 영상 초해상도에 적용되는 심층 학습 기법들은 좋은 성과를 보여 주고 있다. 본 논문은 단일 영상 초해상도 성능을 개선하기 위해 웨이블릿 예측 네트워크를 효율적으로 적용하는 방법에 대해 연구하였으며, 저해상도 입력 영상의 특징을 잘 추출해내기 위해 네트워크 내부에 RDB를 적용하여 기존 방식보다 효율적으로 고해상도 영상 복원하는 기법을 제안한다. 모의실험을 통해 제안하는 방법이 기존 방법보다 화질은 약 PSNR 0.18dB만큼 우수하며 속도는 1.17배 빠른 것을 확인하였다.

  • PDF

비지도 학습 기반의 임베딩과 오토인코더를 사용한 침입 탐지 방법 (Intrusion Detection Method Using Unsupervised Learning-Based Embedding and Autoencoder)

  • 이준우;김강석
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권8호
    • /
    • pp.355-364
    • /
    • 2023
  • 최근 지능화된 사이버 위협이 지속적으로 증가함에 따라 기존의 패턴 혹은 시그니처 기반의 침입 탐지 방식은 새로운 유형의 사이버 공격을 탐지하는데 어려움이 있다. 따라서 데이터 학습 기반 인공지능 기술을 적용한 이상 징후 탐지 방법에 관한 연구가 증가하고 있다. 또한 지도학습 기반 이상 탐지 방식은 학습을 위해 레이블 된 이용 가능한 충분한 데이터를 필요로 하기 때문에 실제 환경에서 사용하기에는 어려움이 있다. 최근에는 정상 데이터로 학습하고 데이터 자체에서 패턴을 찾아 이상 징후를 탐지하는 비지도 학습 기반의 방법에 대한 연구가 활발히 진행되고 있다. 그러므로 본 연구는 시퀀스 로그 데이터로부터 유용한 시퀀스 정보를 보존하는 잠재 벡터(Latent Vector)를 추출하고, 추출된 잠재 벡터를 사용하여 이상 탐지 학습 모델을 개발하는데 있다. 각 시퀀스의 특성들에 대응하는 밀집 벡터 표현을 생성하기 위하여 Word2Vec을 사용하였으며, 밀집 벡터로 표현된 시퀀스 데이터로부터 잠재 벡터를 추출하기 위하여 비지도 방식의 오토인코더(Autoencoder)를 사용하였다. 개발된 오토인코더 모델은 시퀀스 데이터에 적합한 순환신경망 GRU(Gated Recurrent Unit) 기반의 잡음 제거 오토인코더, GRU 네트워크의 제한적인 단기 기억문제를 해결하기 위한 1차원 합성곱 신경망 기반의 오토인코더 및 GRU와 1차원 합성곱을 결합한 오토인코더를 사용하였다. 실험에 사용된 데이터는 시계열 기반의 NGIDS(Next Generation IDS Dataset) 데이터이며, 실험 결과 GRU 기반의 오토인코더나, 1차원 합성곱 기반의 오토인코더를 사용한 모델보다 GRU와 1차원 합성곱을 결합한 오토인코더가 훈련 데이터로부터 유용한 잠재 패턴을 추출하기 위한 학습 시간적 측면에서 효율적이었고 이상 탐지 성능 변동의 폭이 더 작은 안정된 성능을 보였다.

심층신경망의 더블 프루닝 기법의 적용 및 성능 분석에 관한 연구 (Application and Performance Analysis of Double Pruning Method for Deep Neural Networks)

  • 이선우;양호준;오승연;이문형;권장우
    • 융합정보논문지
    • /
    • 제10권8호
    • /
    • pp.23-34
    • /
    • 2020
  • 최근 인공지능 딥러닝 분야는 컴퓨팅 자원의 높은 연산량과 가격문제로 인해 상용화에 어려움이 존재했다. 본 논문은 더블 프루닝 기법을 적용하여 심층신경망 모델들과 다수의 데이터셋에서의 성능을 평가하고자 한다. 더블 프루닝은 기본의 네트워크 간소화(Network-Slimming)과 파라미터 프루닝(Parameter-Pruning)을 결합한다. 이는 기존의 학습에 중요하지 않는 매개변수를 절감하여 학습 정확도를 저해하지 않고 속도를 향상시킬 수 있다는 장점이 있다. 다양한 데이터셋 학습 이후에 프루닝 비율을 증가시켜, 모델의 사이즈를 감소시켰다. NetScore 성능 분석 결과 MobileNet-V3가 가장 성능이 높게 나타났다. 프루닝 이후의 성능은 Cifar 10 데이터셋에서 깊이 우선 합성곱 신경망으로 구성된 MobileNet-V3이 가장 성능이 높았고, 전통적인 합성곱 신경망으로 이루어진 VGGNet, ResNet또한 높은 폭으로 성능이 증가함을 확인하였다.

통계 및 이미지 데이터를 활용한 가짜 SNS 계정 식별 기술 (Fake SNS Account Identification Technique Using Statistical and Image Data)

  • 유승연;신영서;방채운;전찬준
    • 스마트미디어저널
    • /
    • 제11권1호
    • /
    • pp.58-66
    • /
    • 2022
  • 인터넷 기술이 발전함에 따라 SNS 사용자가 늘어나고 있다. SNS의 대중화가 진행되면서 소셜 네트워크의 영향력과 익명성을 활용한 SNS형 범죄가 나날이 증가하고 있는 추세이다. 본 논문에서는 인스타그램에서 SNS형 범죄에 주로 이용되는 가짜 계정 분류를 위해 통계 데이터와 이미지 데이터를 이용하여 각각 기계학습 및 딥러닝(deep learning) 기법을 활용한 가짜 계정 분류 방법을 제안한다. 모델 학습에 사용된 SNS 계정 데이터는 자체적으로 수집하였으며, 수집된 데이터는 통계 데이터 및 이미지 데이터에 기반한다. 통계 데이터의 경우에는 기계학습 및 다층 퍼셉트론 기반으로 학습을 진행하였고, 이미지 데이터의 경우에는 합성곱 신경망(Convolutional Neural Network, CNN) 기반으로 학습을 진행하였다. 학습을 진행한 결과 계정 분류에 대하여 정확도가 전반적으로 높게 나온 것을 확인하였다.