• Title/Summary/Keyword: 합금층

Search Result 555, Processing Time 0.024 seconds

A Study on the Microstructure and Adhesion Properties of Sn-3.5Ag/Alloy42 Lead-Frame Solder Joint (Sn-3.5Ag/Alloy42 리드프레임 땜납접합의 미세조직과 접합특성에 관한 연구)

  • Kim, Si-Jung;Bae, Gyu-Sik
    • Korean Journal of Materials Research
    • /
    • v.9 no.9
    • /
    • pp.926-931
    • /
    • 1999
  • The microstructure, wettability, shear strength and aging effect of Sn-3.5Ag/Cu and Alloy42 lead-frame solder joints were measured for comparison. In the case of Sn-3.5Ag/Cu, $Ag_3Sn and Cu_6Sn_5$ phases in the matrix Sn and $1~2\mu\textrm{m}$ thick $Cu_6Sn_5$ phase at the interface of solder/lead-frame were formed. In the case of Sn-3.5Agl Alloy42, only AgJSn phase of low density in the matrix Sn and $0.5~1.5\mu\textrm{m}$ thick $FeSn_2$, phase at the interface of solder/leadframe were formed. Comparing to Cu, Alloy42 showed wider area of spread and smaller contact angle, thus better wet­tability. But shear strength and ductility of Alloy 42 solder joints were only 33% and 75% of those of Cu, respectively After aging at $180^{\circ}C$ for 1 week, $\xi-Cu_3Sn$ layer on $\eta-Cu_6Sn_5$ layer was formed on Cu lead-frame, while coarsened cir­cular $Ag_3Sn$ phase in the matrix and thickened $FeSn_2$, at the interface were formed on Alloy42 lead- frame.

  • PDF

Applicability for Authenticity of Bronze Artefacts using Scientific Analyses (과학적 분석을 통한 전세품 청동기의 진위판별 적용 가능성 연구)

  • Do, Misol;Chung, Kwang Yong
    • Journal of Conservation Science
    • /
    • v.29 no.4
    • /
    • pp.355-366
    • /
    • 2013
  • Diverse scientific analyses, including microstructure, ICP-AES, SEM-EDS, and P-XRF(Bench Top type and Gun type), were carried out on 6 bronze artefacts which handed from generation to generation. Also, we attempted to study applicability for authenticity of the bronze artefacts using scientific analyses based on the specific element. The results of ICP-AES analysis showed that the bronze were formed from an alloy of Cu, Sn, Pb with trace elements such as Ag, As, Co, Fe, but there were not Zn found. The result of P-XRF are 10~25% lower in Cu and 10~20% higher in Sn than that of ICP-AES. This is because of destannification that the compound of $SnO_2$ are present on the surface. The results of SEM-EDS represented that there is lead segregation. It was difficult to study applicability for authenticity of bronze artefact according to the microstructures and chemical components of the bronze artefacts. Therefore, as bronze artefacts have shown different corrosion materials depending on the buried environment and conserving environment, identifying the authenticity would be possible on the basis of the additional researches on the corrosion and comparative research of ancient art.

The Effects of Thermal Degradation and Creep Damage on the Microstructure and Composition of the Carbides in the CrMo Steels for Power Plant (발전 설비용 CrMo강의 탄화물 구조와 조성 변화에 미치는 열화 및 크리프 손상의 영향)

  • Ju, Yeon-Jun;Hong, Gyeong-Tae;Lee, Hyeon-Ung;Sin, Dong-Hyeok;Kim, Je-Won
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.1018-1024
    • /
    • 1999
  • The effects of operating temperature and stress on degradation of components in high temperature steam generator were investigated. Several 2.25CrlMo tubes which had operated over 20 years and an unused 9CrlMoVNb tube were tested. For the former samples, the amount of $\textrm{M}_{6}\textrm{C}$ carbide and its size are increased with the aging or operating time. The precipitation behavior of carbides ($\textrm{M}_{2}\textrm{O}$, $\textrm{M}_{6}\textrm{C}$) is changed with the operating temperature of the tubes. However, unused 9CrlMoVNb samples show a different carbide precipitation process due to high chromium, vanadium, and niobium contents. The amount of Cr-rich $\textrm{M}_{23}\textrm{C}_{6}$ carbide is significantly increased with aging time, but that of $\textrm{M}_{6}\textrm{C}$ type carbide is rarely changed with aging time at elevated temperatures.

  • PDF

Effect of magnetic separation in removal of Cr and Ni from municipal solid waste incineration (MSWI) bottom ash (생활폐기물(生活廢棄物) 소각(燒却) 바닥재의 자력선별(磁力選別)에 따른 크롬과 니켈의 거동(擧動))

  • Ahn, Ji-Whan;Um, Nam-Il;Cho, Kye-Hong;Oh, Myung-Hwan;You, Kwang-Suk;Han, Gi-Chun;Cho, Hee-Chan;Han, Choon;Kim, Byong-Gon
    • Resources Recycling
    • /
    • v.16 no.6
    • /
    • pp.3-9
    • /
    • 2007
  • Although the ferrous material was separated by the magnetic separation before the incineration process, the municipal solid waste incineration bottom ash generated during incinerator in metropolitan area consists of many iron products which account for about $3{\sim}11%$ as well as ceramics and glasses. The formation of $NiFe_2O_4$ and $FeCr_2O_4$ with a $Fe_3O_4-Fe_2O_3$ (similar to pure Fe) on the surface of iron product was found during air-annealing in the incinerator at $1000^{\circ}C$, because Ni and Cr has a chemical attraction about iron is using to coat with Ni and Cr metals for poish or to prevent corrosion. Therefore, Fe-Ni Cr oxide can be formed on durface of the iron product and it can be separated from bottom ash through the magnetic separation. So, in this study, the separation ratio of heavy metals as magnetic separation and mineralogical formation of Fe-ion(heavy metal) in ferrous metals corroded were investigated. As the result, the separation ratio of Ni and Cr based on particle sizes accounted for about $45{\sim}50%$, and Cu and Pb accounted for below 20%. Also, the leaching concentration of Ni and Cr in bottom ash separated by magnetic separation was lower than that in fresh bottom ash.

Adhesion Properties of Sn-3.5Ag solder on Cu, Alloy42 substrates after aging (시효 처리후 Sn-3.5Ag solder의 Cu, Alloy42 기판에서의 접합특성)

  • 김시중;김주연;배규식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.640-644
    • /
    • 2000
  • The microstructure, wettability, shear strength and aging effect of Sn-3.5Ag/Cu and Alloy42 lead-frame solder joints were measured for comparison. In the case of Sn-3.5Ag/Cu, Ag$_3$Sn and Cu$\sub$6/Sn$\sub$5/ phases in the matrix Sn and 1∼2$\mu\textrm{m}$ thick Cu$\sub$6/Sn$\sub$5/ Phase at the interface of solder/lead-frame were formed. In the case of Sn-3.5AAg/A11oy42, only Ag$_3$Sn Phase of low density in the matrix Sn and 0.5∼1.5$\mu\textrm{m}$ thick FeSn$_2$phase at the interface of solder/lead-frame were formed. Comparing to Cu, Alloy42 shear strength of Alloy 42 solder joints was smaller than that of Cu and all declined after aging. After aging at 180$^{\circ}C$ for 1 week, η-Cu$\sub$6/Sn$\sub$5/ layer was formed on Cu lead-frame, while AgSn$_3$ phase in the matrix and thickened FeSn$_2$at the interface were formed on Alloy42 lead-frame.

  • PDF

A Study on Conservation and Manufacturing Techniques of a Seated Avalokiteshvara with a Thousand Hands of Goryeo Dynasty (고려시대 금동제십일면천수관음보살좌상의 보존처리 및 제작기술 연구)

  • Gwak, Hong In;Kwon, Mi Hye
    • Journal of Conservation Science
    • /
    • v.35 no.3
    • /
    • pp.253-258
    • /
    • 2019
  • The gilt bronze statue, Seated Avalokiteshvara with a Thousand Hands, of the Goryeo dynasty, is the only one in Korea of its kind that has undergone a conservation process for the special exhibition entitled GORYEO: The Glory of Korea. For the conservation treatment, first, a component analysis (XRF) was conducted, and a manufacturing technique (CT) was analyzed. The results of the investigation revealed that the statue was alloyed with Cu, Sn, and Pb ternary bronze. Its surface, except for the detached plating layers, was originally plated using the mercury amalgam method. This statue was assembled after separately casting each part of the body, such as the left and right arms and the wrists, including the hands, with objects. In particular, each wrist was cast and fitted with a metal nail to express each object in the hands more precisely. Inside the statue, there were five iron cores: two for the head, one for the left elbow, one for the right flank, and one for the right waist. For the preservative treatment, natural adhesive agents, including vegetable gelatin and glue (20%), were mixed with alcohol to protect the base metal and adhere to the plating layers. Using synthetic resin (CDK 520+SN-sheet) for the damaged parts, the restored parts could be attached and detached to/from the statue. Eventually, the compositional analysis and conservation treatment left the statue in a stable condition and ready for exhibitions and future studies.

Comparison of Catalyst Support Degradation of PEMFC Electrocatalysts Pt/C and PtCo/C (PEMFC 전극촉매 Pt/C와 PtCo/C의 촉매 지지체 열화비교)

  • Sohyeong Oh;Yoohan Han;Minchul Chung;Donggeun Yoo;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.341-347
    • /
    • 2023
  • In PEMFC, PtCo/C alloy catalysts are widely used because of good performance and durability. However, few studies have been reported on the durability of carbon supports of PtCo/C evaluated at high voltages (1.0~1.5 V). In this study, the durability of PtCo/C catalysts and Pt/C catalysts were compared after applying the accelerated degradation protocol of catalyst support. After repeating the 1.0↔1.5V voltage change cycles, the mass activity, electrochemical surface area (ECSA), electric double layer capacitance (DLC), Pt dissolution and the particle growth were analyzed. After 2,000 cycles of voltage change, the current density per catalyst mass at 0.9V decreased by more than 1.5 times compared to the Pt/C catalyst. This result was because the degradation rate of the carbon support of the PtCo/C catalyst was higher than that of the Pt/C catalyst. The Pt/C catalyst showed more than 1.5 times higher ECSA reduction than the PtCo/C catalyst, but the corrosion of the carbon support of the Pt/C catalyst was small, resulting in a small decrease in I-V performance. In order to improve the high voltage durability of the PtCo/C catalyst, it was shown that improving the durability of the carbon support is essential.

Effects of the Brazing Bonding between Al2O3 and STS304 with an Ion Beams (이온빔을 이용한 STS304와 알루미나 브레이징 접합효과)

  • Park, Il-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8679-8683
    • /
    • 2015
  • Using a surface modification technique, ion beam assisted deposition (IBAD) of Ti thin film it becomes possible to prepare an active ceramic surface to braze $Al_2O_3$-STS304 with conventional Ag-Cu eutectic composition filler metal. Researches on bonding formations at interfaces of ceramic joints were mainly related on the development of filler metals to ceramic, the process parameters, and clarifications of reaction products. From the results, the reactive brazing is a very convenient technique compared to the conventional Mn-Mo method. However melting point of reactive filler is still higher than that of Ag-Cu eutectic and it forms the brittle inter metallic compound. Recently several new approaches are introduced to overcome the main shortcomings of the reactive metal brazing in ceramic-metal, metal vapor vacuum arc ion source was introduced to implant the reactive element directly into the ceramics surface, and sputter deposition with sputter etching for the deposition of active material.

Fabrication of Oxide Thin Films Using Nanoporous Substrates (나노기공성 기판을 사용한 산화물박막의 제조)

  • Park, Yong-Il;Prinz, Fritz B.
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.12 s.271
    • /
    • pp.900-906
    • /
    • 2004
  • Solid oxide fuel cells have a limitation in their low-temperature application due to the low ionic conductivity of electrolyte materials and difficulties in thin film formation on porous gas diffusion layer. These problems can be solved by improvement of ionic conductivity through controlled nanostructure of electrolyte and adopting nanoporous electrodes as substrates which have homogeneous submicron pore size and highly flattened surface. In this study, ultra-thin oxide films having submicron thickness without gas leakage are deposited on nanoporous substrates. By oxidation of metal thin films deposited onto nanoporous anodic alumina substrates with pore size of $20nm{\sim}200nm$ using dc-magnetron sputtering at room temperature, ultra-thin and dense ionic conducting oxide films with submicron thickness are realized. The specific material properties of the thin films including gas permeation, grain/gran boundaries formation, change of crystalline structure/microstructure by phase transition are investigated for optimization of ultra thin film deposition process.

Effects of Parameters on Abrasion-Resistant Layer of Composite Structure Formed by Evaporation Pattern Casting (소실모형주조법에 의한 내마모 복합조직층 형성에 미치는 공정인자의 영향)

  • Choi, Chang-Young;Mo, Nam-Gyu;Kim, Gun-ho;Yoon, Jong-Cheon;Jung, Yu-Hyun;Kim, Dong-Hyuk;Choi, Yong-Jin;Lee, In-Kyu;Cho, Yong-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.89-94
    • /
    • 2018
  • Due to industrial advancement and environmental concerns, there is a demand for light-weight material parts with high-performance characteristics. In order to meet this demand, various studies have been conducted on developing high-performance castings to achieve composite features by coating only specific parts that require high performance, with dissimilar joining, rather than coating the entire material part. This study analyzed the possibility of forming a local composite layer on an aluminum alloy through evaporation pattern casting, and the effects of parameters on the aluminum alloy.