• 제목/요약/키워드: 함수적 주성분분석

검색결과 64건 처리시간 0.027초

함수 주성분 분석을 이용한 한국의 장기 에너지 수요예측 (Long-term Energy Demand Forecast in Korea Using Functional Principal Component Analysis)

  • 최용옥;양현진
    • 자원ㆍ환경경제연구
    • /
    • 제28권3호
    • /
    • pp.437-465
    • /
    • 2019
  • 본 연구에서는 장기 전력 수요와 GDP 사이의 소득계수를 시간과 GDP의 값에 따라 변화하도록 모형화한 Chang et al.(2016)에 기반을 두어 장기 에너지 수요의 예측에 관련된 새로운 방법을 제안한다. 본 논문에서는 장기 에너지와 GDP 사이의 소득계수를 함수로 표현하고, 함수 주성분 분석(Functional Principal Component Analysis)을 통하여 함수계수(Functional Coefficient)를 예측하고 이를 장기 에너지 수요 예측에 적용한다. 또한 함수계수를 비모수적으로 추정할 때 너비띠 모수를 예측 실험 오차를 최소화하도록 설정하는 방식을 제안하였고 개별 국가의 함수계수 변화 패턴을 반영하여 개별 국가의 특수성을 반영하는 예측 방법도 제시한다. 실증분석에서는 전 세계 에너지 데이터를 이용하여 한국의 장기 에너지 수요 예측을 본 논문에서 제시한 방법으로 예측하고, 기존의 방법들 보다 안정적인 장기 에너지 수요 예측이 가능함을 보였다.

주성분 회귀모형을 이용한 과학기술 지식생산함수 추정 (Estimation of S&T Knowledge Production Function Using Principal Component Regression Model)

  • 박수동;성웅현
    • 기술혁신학회지
    • /
    • 제13권2호
    • /
    • pp.231-251
    • /
    • 2010
  • 과학기술 R&D 활동의 대표적 성과인 SCI 논문과 특허의 생산에 영향을 미치는 요인은 연구비, 연구원수, 지식스톡(R&D스톡, 논문스톡, 특허스톡 등), 연구환경, 개방화 정도, 인적자본, GDP 등 다양하다. 일반적인 회귀모형을 이용하여 논문 또는 특허의 생산에 영향을 미치는 요인을 추정하면 생산요인들 간에 다중공선성 문제가 발생하여 추정의 오류가 발생한다. 본 논문에서는 과학기술 지식생산에 영향을 미치는 요인들 간의 다중공선성 문제를 해결하기 위해 주성분 회귀모형을 이용하였다. SCI 논문을 산출로 가정한 과학생산성과와 특허를 산출로 가정한 기술생산성과에 영향을 미치는 요인을 회귀모형과 주성분 회귀모형을 이용하여 3가지 사례를 대상으로 비교 분석하였다. 일반 회귀모형을 이용하여 SCI 논문과 특허의 생산에 영향을 미치는 요인들을 분석한 결과, 요인들간에 다중공선성이 매우 높게 나타났고, 그 결과 회귀계수와 추정과 검정에 오류가 발생되었다. 반면 주성분 회귀모형을 이용하여 분석한 결과 다중공선성문제가 해결되어, 개별 생산요인에 대한 효과를 적절하게 추정할 수 있었다. 본 논문에서 제안한 주성분 회귀모형을 이용한 과학기술 지식생산함수 추정방법은 다중공선성이 강한 소수의 생산요소를 포함한 회귀분석에서 유용하게 적용될 수 있을 것이다.

  • PDF

가보함수와 주성분 분석을 이용한 사용자 인증 시스템 (A User Authentication System Using Gabor Wavelet and Principal Component Analysis)

  • 박준우;이필규
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2001년도 춘계학술발표논문집 (상)
    • /
    • pp.147-150
    • /
    • 2001
  • 컴퓨터의 보편화와 멀티미디어의 발전으로 많은 인공지능의 분야들이 실생활에 응용되고 있다. 이 중에서 얼굴인식은 최근에 연구가 활발한 분야 중에 하나이며 다른 생체인식과는 달리 기계 장치에 신체의 일부를 접촉하지 않고 사람을 확인할 수 있다. 이러한 이유로 향후 생체인식 중 얼굴인식이 차지하는 비중은 커질 것으로 예상되고, 멀티미디어 보안 시스템 등에서 많은 응용이 기대되고 있다. 본 논문에서 정확한 사용자 인증을 위하여 기존의 주성분 분석(PCA; Principal Component Analysis)이 가지고 있는 단점인 조명에 영향을 많이 받는 것을 보완하기 위해, 다양한 조명에 안정적인 가보 함수를 같이 사용하였다. 주성분 분석만을 이용하는 것보다 사용자 인증의 성공률을 향상시킬 수 있음을 알 수 있었다.

  • PDF

신경망을 이용한 로버스트 주성분 분석에 관한 연구 (On Robust Principal Component using Analysis Neural Networks)

  • 김상민;오광식;박희주
    • Journal of the Korean Data and Information Science Society
    • /
    • 제7권1호
    • /
    • pp.113-118
    • /
    • 1996
  • 주성분 분석은 자료압축, 특징추출, 통신이론, 패턴인식 그리고 화상처리등의 컴퓨터 공학분야에서 중요하게 사용되고 있다. Oja(1982,1989,1992)는 확률적 경사 강하법(SGA:Stochastic Gradient Ascent)을 이용한 제한된 헵규칙을 제안하여 주성분 분석에 사용하였다. 그러나, 이 규칙은 이상치에 민감하므로 이상치의 영향을 줄이기 위해, Xu & Yuille(1995)는 통계물리 방법을 이용한 로버스트 에너지함수를 생성하여 로버스트 주성분 분석방법을 제안하였다. 또한 Devlin et.al(1981)은 M-추정량을 이용하여 주성분 분석을 하였다. 본 논문에서는 Oja(1992)의 규칙과 Xu & Yuille(1995)의 로버스트 에너지함수를 이용하여 신경망을 구성하였다. 그리고, Devlin et.al(1981)이 제안한 시뮬레이션조건하에서 실험을 하였다. 실험한 결과와 Devlin et.al(1981)의 결과를 비교, 분석함으로써, 신경망의 성능을 확인하고자 한다.

  • PDF

시간단위 전력사용량 시계열 패턴의 군집 및 분류분석 (Clustering and classification to characterize daily electricity demand)

  • 박다인;윤상후
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권2호
    • /
    • pp.395-406
    • /
    • 2017
  • 전력 공급 시스템의 효율적인 운영을 위해 전력수요예측은 필수적이다. 본 연구에서는 군집분석과 분류분석을 이용하여 일 단위 시간별 전력수요량 시계열 패턴의 유형을 살펴보고자 한다. 전력거래소에서 수집된 2008년 1월 1일부터 2012년 12월 31일까지의 일 단위 시간별 전력수요량 데이터를 추세성분, 계절성분, 오차 성분으로 구성된 시계열 자료로 변환하여 사용하였다. 추세성분을 제거한 시계열 자료의 패턴을 구분하기 위한 군집 분석방법은 k-평균 군집분석 (k-means), 가우시안혼합모델 혼합 모델 군집분석 (Gaussian mixture model), 함수적 군집분석 (functional clustering)을 고려하였다. 주성분분석을 통해 24시간 자료를 2개의 요인로 축소한 후 k-평균 군집분석과 가우시안 혼합 모델, 함수적 군집분석을 수행하였다. 군집분석 결과를 토대로 2008년부터 2011년까지 총 4년간 데이터를 4가지 분류분석방법인 의사결정나무, RF (random forest), Naive bayes, SVM (support vector machine)을 통해 훈련시켜 2012년 군집을 예측하였다. 분석 결과 가우시안 혼합 분포기반 군집분석과 RF를 이용한 군집예측 결과의 성능이 가장 우수하였다.

인공 신경망 기법을 이용한 제지공정의 지절 원인 분석

  • 이진희;이학래
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2001년도 춘계학술발표논문집
    • /
    • pp.168-168
    • /
    • 2001
  • 제지공정의 지절 현상은 많은 공정 변수들이 복합적으로 작용하여 발생하는 가장 큰 공정 트러블 중의 하나이다. 지절은 생산량 감소 뿐만 아니라 발생 후 공정의 복구 와 정리, 생산재가동 및 공정의 재안정화를 위해 많은 시간과 비용, 그리고 노력이 투 입되어야 하므로 공정의 효율과 생산성을 크게 저하시키는 요인이다. 그러나 지절 현상 의 복잡성 때문에 이에 대해 쉽게 접근하거나 해결하지 못하고 있는 것이 현실이지만 그 필요성은 더욱 더 증대되고 있다. 본 연구에서는 최근 들어 각종 산업분야에서 복잡 한 공정상의 결점 발견 및 진단에 효과적이라고 인정받고 있는 예측 분석기법인 인공 신경망(artificial neural network) 시율레이션과 일반적인 통계기법 중의 하나인 주성분 분석을 이용하여 제지 공정의 지절 현상의 검토 가능성을 타진하였다. 인공신경망이란 인간두뇌에서 일어나는 자극-반응-학습과정을 모사하여 현실세계에 존재하는 다양한 현상들의 업력벡터와 출력상태 간의 비선형 mapping올 컴퓨터 시율 레이션을 통하여 분석하고자 하는 기법으로, 여러 가지 현상들을 학습을 통해서 인식하 는 신경망 내의 신경단위들이 병렬처리에 의해 많은 양의 자료에 대한 추론이나 판단 을 신속하고 정확하게 해주는 특징이 있으며 실시간 패턴인식이나 분류 응용분야에도 매우 매력적으로 이용되고 있는 방법이다. 이러한 인공 신경망 기법 중에서도 본 연구 에서는 퍼셉트론의 한계점을 극복하기 위하여 입력총과 출력층에 한 개 이상의 은닉층 ( (hidden layer)을 사용하여 다층 네트워으로 구성하고, 모든 입력패턴에 대하여 발생하 는 오차함수를 최소화하는 방향으로 연결강도를 조정하는 back propagation 학습 알고 리즘을 사용하였다. 지절의 원인으로 추정 가능한 공정인자들을 변수로 하여 최적의 인 공신경망을 구축하기 위해 학습률과 모멘트 상수의 변화 및 은닉층의 수와 출력층의 뉴런 수를 조절하는 동의 작업을 거쳐 네트워크의 정확도가 높은 인공신경망을 설계하 였다. 또한 이러한 인공신경망과의 비교분석을 위해 동일한 공정 데이터들올 이용하여 보편적으로 사용하는 통계기법 중의 하나인 주성분회귀분석을 실시하였다. 주성분 분석은 여러 개의 반응변수에 대하여 얻어진 다변량 자료의 다차원적인 변 수들을 축소, 요약하는 차원의 단순화와 더불어 서로 상관되어있는 반응변수들 상호간 의 복잡한 구조를 분석하는 기법이다. 본 발표에서는 공정 자료를 활용하여 인공신경망 과 주성분분석을 통해 공정 트러블의 발생에 영향 하는 인자들을 보다 현실적으로 추 정하고, 그 대책을 모색함으로써 이를 최소화할 수 있는 방안을 소개하고자 한다.

  • PDF

다층퍼셉트론의 잡음 강건성 분석 및 향상 방법 (An Analysis of Noise Robustness for Multilayer Perceptrons and Its Improvements)

  • 오상훈
    • 한국콘텐츠학회논문지
    • /
    • 제9권1호
    • /
    • pp.159-166
    • /
    • 2009
  • 이 논문에서는 다층퍼셉트론(MLP:Multilayer Perceptron)에서 입력에 잡음이 섞인 경우 출력노드의 확률밀도 함수를 유도하고, 이의 적분으로 잡음에 의하여 패턴이 오인식될 확률을 유도하였다. 그리고, 이를 향상시키는 선형적 방법을 제안하였다. 즉, 독립성분분석(ICA: independent component analysis)과 주성분분석(PCA: principle component analysis)를 적용하여, 이들이 지닌 잡음 처리 효과를 SNR(Signal-to-Noise Ratio) 관점에서 분석하였다. 그리고 이들이 잡음을 처리한 후 MLP에 입력 시 나타나는 잡음 강건성을 필기체 숫자 인식의 시뮬레이션으로 확인하였다.

과적응 감소를 위한 주성분 분석 및 독립성분 분석을 이용한 MLLR 화자적응 알고리즘 개선 (Improvement of MLLR Speaker Adaptation Algorithm to Reduce Over-adaptation Using ICA and PCA)

  • 김지운;정재호
    • 한국음향학회지
    • /
    • 제22권7호
    • /
    • pp.539-544
    • /
    • 2003
  • 본 논문은MLLR (Maximum Likelihood Linear Regression)를 화자 적응시 과적응 방지를 위해 트리 구조에서 HHM 파라메타의 변환을 결정하는 점유 문턱값 (occupation threshold)의 영향을 감소하는 방법에 대해 기술한다. 데이터의 특징을 잘 나타내는 주성분 분석과 독립성분 분석을 통해 모델 혼합성분의 상관관계를 줄이고 상대적으로 데이터의 분포가 적은 축을 삭제함으로써 적은 적응데이터에 의한 과적응의 영향을 감소시켰다. 점유 문턱값을 작게 설정함으로써 변환함수의 수를 증가시켰을 경우, 기존의 MLLR 알고리즘은 과적응에 의해 화자 독립 모델보다 낮은 인식률을 나타내는 반면, 제안한 MLLR알고리즘은 화자 독립 모델의 성능에 비해 평균 2%이상 인식율 향상을 나타내었다.

조건부 FCM과 방사기저함수네트웍을 이용한 유도전동기 고장 검출 (Detection and Disgnosis of induction motor using Conditional FCM and Radial Basis Function Network)

  • 김승석;김형배;유정웅;전명근
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.321-324
    • /
    • 2004
  • 본 논문에서는 유도전동기 고장진단을 위하여 계층적인 하이브리드 뉴럴네트웍을 제안하였다. 시스템의 입출력 데이터에 근거하여 패턴을 분류하고자 할 때 직접적인 분류가 어렵거나 성능이 좋지 않을 경우 적절한 방법을 통하여 변환을 하거나 또는 패턴 분류기의 특성에 맞도록 변환하여 패턴 분류 성능을 향상하는 등 단계별 변환 및 분류 기법을 이용하였다. 제안된 방법에서는 실험에 의해 측정된 전류값을 주기별로 주성분분석(PCA) 기법을 이용하여 입력차원을 축소한 후 이를 조건부 FCM으로 방사기저함수의 초기치를 최적화하여 학습을 하였다. 이는 주성분분석이 가지는 특성을 이용하여 데이터의 특징을 나누었으며 이를 뉴럴네트웍의 학습 기능을 이용하여 모델의 최종 성능을 개선하는 것이다. 각각의 알고리즘이 가지는 특징을 활용하면서도 단점을 계층적으로 보안하여 유도 전동기 고장 진단 성능을 개선하였다. 이를 실제 계측된 유도전동기 데이터를 이용하여 제안된 방법의 유용성을 보이고자 한다.

  • PDF

선박운항 안정성 평가를 위한 시뮬레이션 실험조건 도출 연구

  • 공인영;권세혁;김선영
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2007년도 추계학술대회 및 제23회 정기총회
    • /
    • pp.81-83
    • /
    • 2007
  • 항만이나 항로에서의 심층적인 선박운항 안전성 평가를 위한 목적으로 주로 선박운항 시뮬레이션 시스템이 사용되고 있다. 하지만, 실제해상에서 선박이 조우할 수 있는 환경 조건은 매우 다양한 반면, 비용이나 시간적인 제약으로 인하여 실시간 선박운항 시뮬레이션은 극히 한정 된 경우에 대해서만 수행되는 것이 일반적이다. 본 논문에서는, 이러한 실시간 시뮬레이션 실험 조건을 효과적이고 체계적으로 도출하기 위한 통계적 기법에 대하여 제안하고, 이 기법을 실제 선박 운항 안전성 평가를 위한 시뮬레이션 연구에 적용한 실증 분석 결과를 사례 연구로 기술하였다. 실증 분석에는 주성분을 이용한 종합 운항 난이도 산정 방법과 누적 확률분포 개념을 이용하여 선박 운항 난이도가 높은 실험 조건을 실시간 시뮬레이션 실험 조건으로 선택하는 기법을 제시하였다.

  • PDF