• 제목/요약/키워드: 함수적 주성분분석

검색결과 64건 처리시간 0.029초

기온 강수량 자료의 함수적 데이터 분석 (Functional Data Analysis of Temperature and Precipitation Data)

  • 강기훈;안홍세
    • 응용통계연구
    • /
    • 제19권3호
    • /
    • pp.431-445
    • /
    • 2006
  • 본 연구는 함수적 데이터 분석의 몇 가지 이론에 대해 소개하고 분석 기법을 실제 자료에 적용하는 내용을 다루었다. 함수적 데이터 분석의 이론적 내용으로 기저를 이용해 자료를 함수적 데이터로 표현하는 방법, 그리고 함수적 데이터의 변동성을 조사하는 주성분분석, 선형모형 등에 대해 살펴보았다. 그리고 우리나라 기온 데이터와 강수량 데이터를 대상으로 각각 함수적 데이터 분석 기법을 적용해 보았다. 또한, 기온과 강수량 데이터에 대해 함수적 회귀모형을 적합시켜 두 변수간의 함수관계를 살펴보았다.

계절변동의 함수적 예측 (Functional Forecasting of Seasonality)

  • 이긍희
    • 응용통계연구
    • /
    • 제28권5호
    • /
    • pp.885-893
    • /
    • 2015
  • 통계청과 한국은행 등 통계작성기관에서 이용되고 있는 계절조정은 연간 경제통계 작성시 시계열을 예측한 후 계절조정방법을 적용하여 1년 후 계절변동을 예측하고 원통계 작성시 원통계에서 이를 제거하여 계절조정계열을 작성하고 있다. 이 경우 계절변동을 효과적으로 예측하는 것이 계절조정계열의 품질 향상을 위해 무엇보다 중요하다. 계절변동은 1년 단위로 비슷한 함수적 형태를 지니면서 변하므로 계절변동은 일종의 함수적 시계열이다. 함수적 시계열은 함수적 주성분분석을 바탕으로 한 함수적 시계열모형으로 예측할 수 있다. 본 연구에서는 함수적 시계열 모형을 이용하여 향후 1년간 계절변동을 예측하는 방안을 마련하고 X-11 방식 등 기존의 예측방법과 비교하여 유용성을 파악하였다.

계층적 벌점함수를 이용한 주성분분석 (Hierarchically penalized sparse principal component analysis)

  • 강종경;박재신;방성완
    • 응용통계연구
    • /
    • 제30권1호
    • /
    • pp.135-145
    • /
    • 2017
  • 주성분 분석(principal component analysis; PCA)은 서로 상관되어 있는 다변량 자료의 차원을 축소하는 대표적인 기법으로 많은 다변량 분석에서 활용되고 있다. 하지만 주성분은 모든 변수들의 선형결합으로 이루어지므로, 그 결과의 해석이 어렵다는 한계가 있다. sparse PCA(SPCA) 방법은 elastic net 형태의 벌점함수를 이용하여 보다 성긴(sparse) 적재를 가진 수정된 주성분을 만들어주지만, 변수들의 그룹구조를 이용하지 못한다는 한계가 있다. 이에 본 연구에서는 기존 SPCA를 개선하여, 자료가 그룹화되어 있는 경우에 유의한 그룹을 선택함과 동시에 그룹 내 불필요한 변수를 제거할 수 있는 새로운 주성분 분석 방법을 제시하고자 한다. 그룹과 그룹 내 변수 구조를 모형 적합에 이용하기 위하여, sparse 주성분 분석에서의 elastic net 벌점함수 대신에 계층적 벌점함수 형태를 고려하였다. 또한 실제 자료의 분석을 통해 제안 방법의 성능 및 유용성을 입증하였다.

남한지역 정규식생지수의 시공간 변화도 분석 (Analysis of the Spatial and Temporal Variability of NDVI Time Series in South Korea)

  • 김광섭;임태경
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.119-122
    • /
    • 2005
  • 정규식생지수는 일반적으로 식생의 활력도를 나타나는 지표로서 널리 사용되고 있다. 최근에는 정규식생지수가 특정지역의 강우량과 온도의 계절 및 경년변화와 어떤 상관관계를 가지며 기후변화는 식생지수에 어떠한 영향을 미치는지 등에 관한 연구가 활발히 수행되고 있다. 본 연구에서는 1981년부터 2001년까지의 NOAA/AVHRR 영상으로부터 계산된 남한지역 정규식생지수의 주성분 분석을 통해 자료의 공간변화패턴을 분석하고 경험적 직교함수를 이용하여 시간적 변화 양상을 파악하였다. 분석결과 정규식생지수의 공간변화도는 첫 주성분에 의하여 약 $60\%$ 정도 설명되어지며 첫 주성분은 남한지역의 지형 자료 패턴을 따르고 두 번째 주성분은 전체 변화도의 약 $17\%$를 나타내며 강한 남북기울기를 보여주는 것은 계절변화와 상관한 위도변화에 따른 정규식생지수의 변화를 나타낸다. 그리고 소양강댐 및 안동댐 유역의 정규식생지수, 강우량 및 유입량 상관관계 분석 결과 정규식생지수의 계절변화와 경년변화는 강우량의 변화에 그리 민감하지 않은 것으로 나타났다.

  • PDF

호우 위험도 평가를 이용한 피해예측 (Damage Prediction Using Heavy Rain Risk Assessment)

  • 김종성;최창현;이종소;김형수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.154-154
    • /
    • 2017
  • 전 세계적인 기후변동과 기후변화의 영향으로 대규모 인명 및 재산피해를 유발하는 자연재난의 빈도와 강도가 증가하고 있다. 이렇게 변화하는 상황에서 효율적인 대책을 수립하기 위해서는 재해에 노출된 특성을 지역적 특성과 함께 고려하여 지역별로 재해에 위험한 정도를 평가하는 것이 선행되어지고, 재난 피해 발생전에 피해 지역 및 범위를 예측하는 것이 필요하다고 판단된다. 따라서 본 연구에서는 국내 자연재난 피해의 65% 이상을 차지하는 호우피해를 대상으로 PSR(Pressure-State-Response) 구조를 이용하여 호우피해위험지수(Heavy rain Damage Risk Index, HDRI)를 제안하여 호우 위험도를 평가하고자하였다. 또한 도출된 지역별 위험등급에 따른 호우피해 예측함수를 개발하여 재해발생 전에 개략적인 피해의 범위를 예측하고자 하였다. 먼저 지역별 호우 위험도 평가를 위해 압력지표, 현상지표, 대책지표를 구축하고, 주성분분석을 이용하여 평가지표를 결정하였다. 결정된 평가지표를 동일한 가중치를 부여하여 호우피해위험지수를 도출하였다. 분석결과, 경기도 31개 지자체 중에서 가장 안전한 1등급인 지자체는 15개의 지자체로 나타났으며, 2등급인 지자체는 7개, 3등급인 지자체는 9개로 분류되었다. 지자체별 호우 위험도 등급에 따라서 재해기간별 총강우량, 재해일수, 선행강우량(1~5일), 지속시간별 최대강우량(1~24시간) 등의 자료를 설명변수로 구축하였고, 다중회귀모형과 주성분분석을 활용하여 예측함수를 개발하였다. 등급별 호우피해 예측함수는 N-RMSE가 12~18%로 호우피해를 적절하게 예측하는 것으로 평가되었다. 본 연구를 통해 지자체별 호우피해위험도 등급을 파악 할 수 있으며, 평가된 호우피해위험도 등급별로 호우피해 예측함수 개발을 통해 사전에 호우피해 발생 및 규모를 파악할 수 있게 되었다. 따라서 본 연구의 결과는 각 지자체 및 관련 부처에서 효과적인 방재체계를 수립하는데 있어 기초자료로 활용될 수 있을 것으로 판단된다.

  • PDF

비선형 특징 추출을 위한 온라인 비선형 주성분분석 기법 (On-line Nonlinear Principal Component Analysis for Nonlinear Feature Extraction)

  • 김병주;심주용;황창하;김일곤
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권3호
    • /
    • pp.361-368
    • /
    • 2004
  • 본 논문에서는 온라인 학습 자료의 비선형 특징(feature) 추출을 위한 새로운 온라인 비선형 주성분분석(OL-NPCA : On-line Nonlinear Principal Component Analysis) 기법을 제안한다. 비선형 특징 추출을 위한 대표적인 방법으로 커널 주성분방법(Kernel PCA)이 사용되고 있는데 기존의 커널 주성분 분석 방법은 다음과 같은 단점이 있다. 첫째 커널 주성분 분석 방법을 N 개의 학습 자료에 적용할 때 N${\times}$N크기의 커널 행렬의 저장 및 고유벡터를 계산하여야 하는데, N의 크기가 큰 경우에는 수행에 문제가 된다. 두 번째 문제는 새로운 학습 자료의 추가에 의한 고유공간을 새로 계산해야 하는 단점이 있다. OL-NPCA는 이러한 문제점들을 점진적인 고유공간 갱신 기법과 특징 사상 함수에 의해 해결하였다. Toy 데이타와 대용량 데이타에 대한 실험을 통해 OL-NPCA는 다음과 같은 장점을 나타낸다. 첫째 메모리 요구량에 있어 기존의 커널 주성분분석 방법에 비해 상당히 효율적이다. 두 번째 수행 성능에 있어 커널 주성분 분석과 유사한 성능을 나타내었다. 또한 제안된 OL-NPCA 방법은 재학습에 의해 쉽게 성능이 항상 되는 장점을 가지고 있다.

함수형 선형모형에서의 B-스플라인에 기초한 검정 (Classical testing based on B-splines in functional linear models)

  • 손지훈;이은령
    • 응용통계연구
    • /
    • 제32권4호
    • /
    • pp.607-618
    • /
    • 2019
  • 현대 과학기술의 발전으로 인해 함수 형태의 자료(functional data)는 기상학, 생물의학과 다양한 분야에서 발생하고 있으며 이러한 자료를 분석하는 것은 새롭고 흥미로운 통계과제라 할 수 있다. 스칼라 반응변수를 가진 함수형 선형회귀 모형(functional linear regression models with scalar response)은 널리 사용되는 함수형 자료 분석기법 중의 하나라 할 수 있고 이 회귀 모형에서 함수형 자료 (설명변수) 가 스칼라 반응변수에 영향력을 미치는지 검정하는 것은 중요한 문제라 할 수 있다. 최근, Kong 등은 함수형 주성분분석(functional principle component analysis)에 의한 차원 축소, 즉, 함수형 주성분분석 결과 얻어지는 고유함수(eigenfunctions)를 활용한 검정방법을 제안했다. 하지만, 그 고유함수들은 검정문제에서 관심사인 함수형 설명변수와 스칼라 반응변수의 연관성이 아니라 함수형 설명변수의 변동만을 고려하기 때문에 회귀문제에 사용하기에 일반적으로 적합한 기저가 아니다. 게다가, 자료로부터 추정하여야 하기 때문에 이 불필요한 추정오차가 검정 절차 성능에 포함될 가능성이 있다. 이러한 단점을 피하기 위해 본 논문에서는 기존의 고유기저함수가 아닌 고정기저(fixed basis)인 B-스플라인(B-splines) 함수를 활용한 검정 방법을 제안한고 모의실험을 통해 검정방법이 잘 작동한다는 것을 보여준다. 또한, 제안한 검정 방법은 B-스플라인의 국소화 성질 때문에 때론 효율적이고 직관적인 결과를 제공하는데 이를 모의실험과 실증자료 분석을 통해 보여줄 것이다.

주성분 분석법과 선형판별 분석법을 이용한 최적화된 방사형 기저 함수 신경회로망 분류기의 설계 (Design of Optimized Radial Basis Function Neural Networks Classifier with the Aid of Principal Component Analysis and Linear Discriminant Analysis)

  • 김욱동;오성권
    • 한국지능시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.735-740
    • /
    • 2012
  • 본 연구에서는 주성분 분석법 및 선형 판별 분석법을 이용한 다항식 방사형 기저 함수 신경회로망 분류기의 설계 방법론을 소개한다. 주성분 분석법과 선형판별 분석법을 사용하여 주어진 데이터의 정보 손실을 최소화한 특징데이터를 생성하고 이를 다항식 방사형 기저함수 신경회로망의 입력데이터로 사용한다. 방사형 기저 함수 신경회로망의 은닉층은 FCM 클러스터링 알고리즘으로 구성되며 연결가중치는 1차 선형식을 사용하였다. 최적의 분류기 설계를 위해서 최근에 제안된 Artificial Bee Colony(ABC) 최적화 알고리즘을 사용하여 구조 및 파라미터를 동조하였다. ABC 알고리즘을 통해 주성분 분석법과 선형판별 분석법의 고유벡터의 수 및 FCM 클러스터링 알고리즘의 퍼지화 계수등의 파라미터를 동조한다. 제안된 분류기는 대표적인 Machine Learning(ML) 데이터를 사용하여 성능을 평가하며 기존 분류기와 성능을 비교한다.

주성분 분석법을 이용한 머리전달함수 모형화 기법의 성능 비교 (Comparison of Head-related Transfer Function Models Based on Principal Components Analysis)

  • 황성목;박영진;박윤식
    • 한국소음진동공학회논문집
    • /
    • 제18권6호
    • /
    • pp.642-653
    • /
    • 2008
  • 이 연구는 중앙면 상에서 주성분 분석법을 이용하여 시간 및 주파수 영역에서 머리전달함수의 모형화 기법들을 다룬다. 시간영역의 머리전달함수, 복소수 값의 머리전달함수, 확장된 머리전달함수, 로그 크기의 머리전달함수에 기반하여 각각 주성분 분석법을 수행하여 얻은 네 가지 머리전달함수 모형들에 대해서 최소자승오차 관점에서 모형화 성능을 비교하고, 모형들간의 이론적인 관계를 살펴보는 것이 이 연구의 목적이다. 모형화에 사용되는 기저함수의 수가 동일하다면, 시간영역에서의 머리전달함수 혹은 확장된 머리전달함수에 기반한 모형이 복소수 값의 머리전달함수에 기반한 모형보다 최소자승오차 관점에서 더 효율적인 모형화 성능을 지닌다. 시간영역에서의 머리전달함수에 기반한 모형과 확장된 머리전달함수에 기반한 모형은 이론적으로 동일한 모형이며 서로 푸리에 변환 관계가 있다. 로그 크기의 머리전달함수에 기반한 모형은 다른 모형들과 모형화 성능 및 이론적인 관계를 비교할 수가 없는데, 이는 로그 크기의 머리전달함수에 기반한 모형은 머리전달함수의 크기 정보만을 로그 크기로 다루는 반면에 다른 모형들은 선형 크기로 머리전달함수의 크기와 위상정보를 모두 다루기 때문이다.

공간자료 주성분분석 (Principal component regression for spatial data)

  • 임예지
    • 응용통계연구
    • /
    • 제30권3호
    • /
    • pp.311-321
    • /
    • 2017
  • 주성분 분석은 통계학 뿐만 아니라 기상학에서 널리 사용되는 방법론이며, 고차원 자료에 대한 차원축소 역할 뿐만아니라 기상자료에서의 의미있는 패턴을 찾아내기 위해 사용되는 방법론이다. 또한 주성분분석에 기반을 둔 주성분 회귀분석 방법론은 기후예측이 가능하므로 미래 시점의 기후값 예측에 사용될 수 있다. 본 논문에서는 Wang과 Huang (2016) 논문에서 제안한 제한된 공간 주성분 분석을 기반으로 한 주성분 회귀분석 방법론을 개발하였다. 이를 시뮬레이션을 통하여 확인하였고, 실제 자료인 동아시아 지역 온도예측에 적용하여 기존의 주성분 회귀분석 예측 값에 비해 예측력이 높아짐을 확인하였다.