• Title/Summary/Keyword: 함수데이터분석

Search Result 914, Processing Time 0.031 seconds

Comparative Analysis of Self-supervised Deephashing Models for Efficient Image Retrieval System (효율적인 이미지 검색 시스템을 위한 자기 감독 딥해싱 모델의 비교 분석)

  • Kim Soo In;Jeon Young Jin;Lee Sang Bum;Kim Won Gyum
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.12
    • /
    • pp.519-524
    • /
    • 2023
  • In hashing-based image retrieval, the hash code of a manipulated image is different from the original image, making it difficult to search for the same image. This paper proposes and evaluates a self-supervised deephashing model that generates perceptual hash codes from feature information such as texture, shape, and color of images. The comparison models are autoencoder-based variational inference models, but the encoder is designed with a fully connected layer, convolutional neural network, and transformer modules. The proposed model is a variational inference model that includes a SimAM module of extracting geometric patterns and positional relationships within images. The SimAM module can learn latent vectors highlighting objects or local regions through an energy function using the activation values of neurons and surrounding neurons. The proposed method is a representation learning model that can generate low-dimensional latent vectors from high-dimensional input images, and the latent vectors are binarized into distinguishable hash code. From the experimental results on public datasets such as CIFAR-10, ImageNet, and NUS-WIDE, the proposed model is superior to the comparative model and analyzed to have equivalent performance to the supervised learning-based deephashing model. The proposed model can be used in application systems that require low-dimensional representation of images, such as image search or copyright image determination.

The Comparison of Image Quality and Quantitative Indices by Wide Beam Reconstruction Method and Filtered Back Projection Method in Tl-201 Myocardial Perfusion SPECT (Tl-201 심근관류 SPECT 검사에서 광대역 재구성(Wide Beam Reconstruction: WBR) 방법과 여과 후 역투영법에 따른 영상의 질 및 정량적 지표 값 비교)

  • Yoon, Soon-Sang;Nam, Ki-Pyo;Shim, Dong-Oh;Kim, Dong-Seok
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.122-127
    • /
    • 2010
  • Purpose: The Xpress3.$cardiac^{TM}$ which is a kind of wide beam reconstruction (WBR) method developed by UltraSPECT (Haifa, Israel) enables the acquisition of at quarter time while maintaining image quality. The purpose of this study is to investigate the usefulness of WBR method for decreasing scan times and to compare to it with filtered back projection (FBP), which is the method routinely used. Materials and Methods: Phantom and clinical studies were performed. The anthropomorphic torso phantom was made on an equality with counts from patient's body. The Tl-201 concentrations in the compartments were 74 kBq (2 ${\mu}Ci$)/cc in myocardium, 11.1 kBq (0.3 ${\mu}Ci$)/cc in soft tissue, and 2.59 kBq (0.07 ${\mu}Ci$)/cc in lung. The non-gated Tl-201 myocardial perfusion SPECT data were acquired with the phantom. The former study was scanned for 50 seconds per frame with FBP method, and the latter study was acquired for 13 seconds per frame with WBR method. Using the Xeleris ver. 2.0551, full width at half maximum (FWHM) and average image contrast were compared. In clinical studies, we analyzed the 30 patients who were examined by Tl-201 gated myocardial perfusion SPECT in department of nuclear medicine at Asan Medical Center from January to April 2010. The patients were imaged at full time (50 second per frame) with FBP algorithm and again quarter-time (13 second per frame) with the WBR algorithm. Using the 4D MSPECT (4DM), Quantitative Perfusion SPECT (QPS), and Quantitative Gated SPECT (QGS) software, the summed stress score (SSS), summed rest score (SRS), summed difference score, end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (EF) were analyzed for their correlations and statistical comparison by paired t-test. Results: As a result of the phantom study, the WBR method improved FWHM more than about 30% compared with FBP method (WBR data 5.47 mm, FBP data 7.07 mm). And the WBR method's average image contrast was also higher than FBP method's. However, in result of quantitative indices, SSS, SDS, SRS, EDV, ESV, EF, there were statistically significant differences from WBR and FBP(p<0.01). In the correlation of SSS, SDS, SRS, there were significant differences for WBR and FBP (0.18, 0.34, 0.08). But EDV, ESV, EF showed good correlation with WBR and FBP (0.88, 0.89, 0.71). Conclusion: From phantom study results, we confirmed that the WBR method reduces an acquisition time while improving an image quality compared with FBP method. However, we should consider significant differences in quantitative indices. And it needs to take an evaluation test to apply clinical study to find a cause of differences out between phantom and clinical results.

  • PDF

An automated memory error detection technique using source code analysis in C programs (C언어 기반 프로그램의 소스코드 분석을 이용한 메모리 접근오류 자동검출 기법)

  • Cho, Dae-Wan;Oh, Seung-Uk;Kim, Hyeon-Soo
    • The KIPS Transactions:PartD
    • /
    • v.14D no.6
    • /
    • pp.675-688
    • /
    • 2007
  • Memory access errors are frequently occurred in C programs. A number of tools and research works have been trying to detect the errors automatically. However, they have one or more of the following problems: inability to detect all memory errors, changing the memory allocation mechanism, incompatibility with libraries, and excessive performance overhead. In this paper, we suggest a new method to solve these problems, and then present a result of comparison to the previous research works through the experiments. Our approach consists of two phases. First is to transform source code at compile time through inserting instrumentation into the source code. And second is to detect memory errors at run time with a bitmap that maintains information about memory allocation. Our approach has improved the error detection abilities against the binary code analysis based ones by using the source code analysis technique, and enhanced performance in terms of both space and time, too. In addition, our approach has no problem with respect to compatibility with shared libraries as well as does not need to modify memory allocation mechanism.

A spectrum based evaluation algorithm for micro scale weather analysis module with application to time series cluster analysis (스펙트럼분석 기반의 미기상해석모듈 평가알고리즘 제안 및 시계열 군집분석에의 응용)

  • Kim, Hea-Jung;Kwak, Hwa-Ryun;Kim, Yu-Na;Choi, Young-Jean
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.1
    • /
    • pp.41-53
    • /
    • 2015
  • In meteorological field, many researchers have tried to develop micro scale weather analysis modules for providing real-time weather information service in the metropolitan area. This effort enables us to cope with various economic and social harms coming from serious change in the micro meteorology of a metropolitan area due to rapid urbanization such as quantitative expansions in its urban activity, growth of population, and building concentration. The accuracy of the micro scale weather analysis modules (MSWAM) directly related to usefulness and quality of the real-time weather information service in the metropolitan area. This paper design a evaluation system along with verification tools that sufficiently accommodate spatio-temporal characteristics of the outputs of the MSWAM. For this we proposes a test for the equality of mean vectors of the output series of the MSWAM and corresponding observed time series by using a spectral analysis technique. As a byproduct, a time series cluster analysis method, using a function of the test statistic as the distance measure, is developed. A real data application is given to demonstrate the utility of the method.

A Study on the Penetration Characteristics of a Steel Fragment Impacting on the Target Plate of Aluminum 2024 (알루미늄 2024 표적에 대한 HE 탄두 파편의 관통 특성 연구)

  • Kim, Deuksu;Kang, Sunbu;Jung, Daehan;Chung, Youngjin;Park, Yongheon;Park, Seikwon;Hwang, Changsu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.257-268
    • /
    • 2018
  • We have studied the damage mechanism of a metallic thin plate by the highly energetic fragments generated from high explosive(HE) warhead. The penetration process has presumed that the velocity of a fragment is in the range of 350 m/s to 3353 m/s, the thickness of Aluminum 2024 target plate is in the range of 1 mm~6.3 mm thick. The mass of fragment with hemisphere nose shape is in the range of 0.32 g to 16 g. The analytical solution for penetration process has been derived by using the report of the project THOR. The results of analysis implied that the closed forms by an exponentially decay function well fit the change of the ballistic limit velocity, loss velocity and loss mass of fragment as the mass of fragment and the thickness of target plate increase.

The effect of temperature on the electricity demand: An empirical investigation (기온이 전력수요에 미치는 영향 분석)

  • Kim, Hye-min;Kim, In-gyum;Park, Ki-Jun;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.167-173
    • /
    • 2015
  • This paper attempts to estimate the electricity demand function in Korea with quarterly data of average temperature, GDP and electricity price over the period 2005-2013. We apply lagged dependent variable model and ordinary least square method as a robust approach to estimating the parameters of the electricity demand function. The results show that short-run price and income elasticities of the electricity demand are estimated to be -0.569 and 0.631, respectively. They are statistically significant at the 1% level. Moreover, long-run income and price elasticities are estimated to be 1.589 and -1.433, respectively Both of results reveal that the demand for electricity is price- and income-elastic in the long-run. The relationship between electricity consumption and temperature is supported by many of references as a U-shaped relationship, and the base temperature of electricity demand is about $15.2^{\circ}C$. It is shown that power of explanation and goodness-of-fit statistics are improved in the use of the lagged dependent variable model rather than conventional model.

Development and Exploration of Safety Performance Functions Using Multiple Modeling Techniques : Trumpet Ramps (다양한 통계 기법을 활용한 안전성능함수 개발 및 비교 연구 : 트럼펫형 램프를 중심으로)

  • Yang, Samgyu;Park, Juneyoung;Kwon, Kyeongjoo;Lee, Hyunsuk
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.5
    • /
    • pp.35-44
    • /
    • 2021
  • In recent times, several studies have been conducted focusing on crashes occurring on the main segment of the highway. However, there is a dearth of research dealing with traffic safety relating to other highway facilities, especially ramp areas. According to the Korea Expressway Corporation's Expressway Information Service, 6,717 crashes have occurred on ramps in the five years from 2015~2019, which accounts for about 15% of all highway accidents. In this study, the simple and full safety performance functions (SPFs) were evaluated and explored using different statistical distributions (i.e., Poisson Gamma (PG) and Poisson Inverse Gaussian (PIG)) and techniques (i.e., fixed effects (FE) and random effects (RE)) to provide more accurate crash prediction models for highway ramp sections. Data on the geometric characteristics of traffic and roadways were collected from various systems and with extensive efforts using a street-view application. The results showed that the PIG models present more accurate crash predictions in general. The results also indicated that the RE models performed better than FE models for simple and full SPFs. The findings from this study offer transportation practitioners using the Korea Expressway Corporation's Expressway a dependable reference to enhance and understand traffic safety in ramp areas based on accurate crash prediction models and empirical evidence.

Super High-Resolution Image Style Transfer (초-고해상도 영상 스타일 전이)

  • Kim, Yong-Goo
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.104-123
    • /
    • 2022
  • Style transfer based on neural network provides very high quality results by reflecting the high level structural characteristics of images, and thereby has recently attracted great attention. This paper deals with the problem of resolution limitation due to GPU memory in performing such neural style transfer. We can expect that the gradient operation for style transfer based on partial image, with the aid of the fixed size of receptive field, can produce the same result as the gradient operation using the entire image. Based on this idea, each component of the style transfer loss function is analyzed in this paper to obtain the necessary conditions for partitioning and padding, and to identify, among the information required for gradient calculation, the one that depends on the entire input. By structuring such information for using it as auxiliary constant input for partition-based gradient calculation, this paper develops a recursive algorithm for super high-resolution image style transfer. Since the proposed method performs style transfer by partitioning input image into the size that a GPU can handle, it can perform style transfer without the limit of the input image resolution accompanied by the GPU memory size. With the aid of such super high-resolution support, the proposed method can provide a unique style characteristics of detailed area which can only be appreciated in super high-resolution style transfer.

Economic and Environmental Assessment of a Renewable Stand-Alone Energy Supply System Using Multi-objective Optimization (다목적 최적화 기법을 이용한 신재생에너지 기반 자립 에너지공급 시스템 설계 및 평가)

  • Lee, Dohyun;Han, Seulki;Kim, Jiyong
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.332-340
    • /
    • 2017
  • This study aims to propose a new optimization-based approach for design and analysis of the stand-alone hybrid energy supply system using renewable energy sources (RES). In the energy supply system, we include multiple energy production technologies such as Photovoltaics (PV), Wind turbine, and fossil-fuel-based AC generator along with different types of energy storage and conversion technologies such as battery and inverter. We then select six different regions of Korea to represent various characteristics of different RES potentials and demand profiles. We finally designed and analyzed the optimal RES stand-alone energy supply system in the selected regions using multiobjective optimization (MOOP) technique, which includes two objective functions: the minimum cost and the minimum $CO_2$ emission. In addition, we discussed the feasibility and expecting benefits of the systems by comparing to conventional systems of Korea. As a result, the region of the highest RES potential showed the possibility to remarkably reduce $CO_2$ emissions compared to the conventional system. Besides, the levelized cost of electricity (LCOE) of the RES-based energy system is identified to be slightly higher than conventional energy system: 0.35 and 0.46 $/kWh, respectively. However, the total life-cycle emission of $CO_2$ ($LCE_{CO2}$) can be reduced up to 470 g$CO_2$/kWh from 490 g$CO_2$/kWh of the conventional systems.

The Measurement and Analysis of LiF:Mg, Cu, Na, Si TL Material by Thermoluminescence Spectrum (LiF:Mg, Cu, Na, Si TL 물질의 열자극발광스펙트럼 측정 및 분석)

  • Lee, J.I.;Moon, J.H.;Kim, D.H.
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.1
    • /
    • pp.149-153
    • /
    • 2001
  • Three-dimensional thermoluminescence(TL) spectra of LiF: Mg, Cu, Na, Si TL material based on temperature, wavelength and intensity were measured and analyzed. The glow curves were obtained by integration of luminescence intensity for wavelength at each temperature, and various trapping parameters related to the trap formation were determined by analyzing these curves. Computerized glow curve deconvolution(CGCD) method which based on general order kinetics(GOK) model were used for the glow curve analysis. The glow curves of LiF:Mg, Cu, Na, Si TL material were deconvoluted to six isolated glow curves which have peak temperature at 333 K, 374 K, 426 K, 466 K, 483 K and 516 K, respectively. The 466 K main glow peak had an activation energy of 2.06 eV and a kinetic order of 1.05. This TL material was also found to have three recombination centers, 1.80 eV, 2.88 eV and 3.27 eV by TL spectra analysis based on Franck-Condon model. It showed that 2.88 eV is the dominant center, followed by 3.27 eV level, and 1.80 eV center is ascertained as emission center of this material even though its very weak emission intensity.

  • PDF