In this study, we propose a new method to forecast long-term energy demand in Korea. Based on Chang et al. (2016), which models the time varying long-run relationship between electricity demand and GDP with a function coefficient panel model, we design several schemes to retain objectivity of the forecasting model. First, we select the bandwidth parameters for the income coefficient based on the out-of-sample forecasting performance. Second, we extend the income coefficient using the functional principal component analysis method. Third, we proposed a method to reflect the elasticity change patterns inherent in Korea. In the empirical analysis part, we forecasts the long-term energy demand in Korea using the proposed method to show that the proposed method generates more stable long term forecasts than the existing methods.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.04a
/
pp.321-324
/
2004
본 논문에서는 유도전동기 고장진단을 위하여 계층적인 하이브리드 뉴럴네트웍을 제안하였다. 시스템의 입출력 데이터에 근거하여 패턴을 분류하고자 할 때 직접적인 분류가 어렵거나 성능이 좋지 않을 경우 적절한 방법을 통하여 변환을 하거나 또는 패턴 분류기의 특성에 맞도록 변환하여 패턴 분류 성능을 향상하는 등 단계별 변환 및 분류 기법을 이용하였다. 제안된 방법에서는 실험에 의해 측정된 전류값을 주기별로 주성분분석(PCA) 기법을 이용하여 입력차원을 축소한 후 이를 조건부 FCM으로 방사기저함수의 초기치를 최적화하여 학습을 하였다. 이는 주성분분석이 가지는 특성을 이용하여 데이터의 특징을 나누었으며 이를 뉴럴네트웍의 학습 기능을 이용하여 모델의 최종 성능을 개선하는 것이다. 각각의 알고리즘이 가지는 특징을 활용하면서도 단점을 계층적으로 보안하여 유도 전동기 고장 진단 성능을 개선하였다. 이를 실제 계측된 유도전동기 데이터를 이용하여 제안된 방법의 유용성을 보이고자 한다.
Water content of sub-layer in pavement systems has a large effect on pavement performance. Many researchers lately make use of time-domain reflectometry(TDR) probes to measure the soil water content of sub-layer from field monitoring. The laboratory calibration test of TDR probe should be performed with soil field, because TDR probe can cause an error by type, gradation, density, and temperature of soil. This study performed the laboratory calibration test of TDR probe(CS616) with subgrade and subbase material in long term pavement performance(LTPP) sections. And the calibration equations of TDR probe(CS616) were then proposed. It was confirmed from the study that the data of TDR probe monitored in field could be used to estimate the freezing, unfrozen water content, and matric suction of soil.
Nowadays we are considering and analyzing not only classical data expressed by points in the p-dimensional Euclidean space but also new types of data such as signals, functions, images, and shapes, etc. Symbolic data also can be considered as one of those new types of data. Symbolic data can have various formats such as intervals, histograms, lists, tables, distributions, models, and the like. Up to date, symbolic data studies have mainly focused on individual formats of symbolic data. In this study, it is extended into datasets with both histogram and multimodal-valued data and a divisive clustering method for the mixed feature-type symbolic data is introduced and it is applied to the analysis of industrial accident data.
Following two pioneering works, Medoff and Abraham(QJE 1980; JHR 1981) and Flabbi and Ichino(LE 2001) which use performance rating of personnel data as individual worker's productivity, this study replicates their analysis using a Korean large firm's personnel data(2000, male white collar workers). According to their methods through Mincerian earnings function, and multinomial logit model that links the distribution of wages and performance ratings, we find that seniority wages appeare continuously even if individual worker's productivity is controlled. Therefore we conclude that incentive or deferred compensation theory is more suitable than human capital theory.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.49
no.4
/
pp.61-68
/
2012
In this paper, a closed-loop sensorless stroke control system for a linear compressor has been designed. In order to estimate the piston position accurately, motor parameters are identified as a function of the piston position and the motor current. These parameters are stored in ROM table and used later for the accurate estimation of piston position. The identified motor parameters are approximated to the several surface functions in order to decrease memory size. They can also be divided into 2 or 4 subsections to decrease identification errors. The effect of the order of surface functions and division of subsections on identification errors and computation time is analyzed.
Journal of the Korean Data and Information Science Society
/
v.28
no.2
/
pp.395-406
/
2017
The purpose of this study is to identify the pattern of daily electricity demand through clustering and classification. The hourly data was collected by KPS (Korea Power Exchange) between 2008 and 2012. The time trend was eliminated for conducting the pattern of daily electricity demand because electricity demand data is times series data. We have considered k-means clustering, Gaussian mixture model clustering, and functional clustering in order to find the optimal clustering method. The classification analysis was conducted to understand the relationship between external factors, day of the week, holiday, and weather. Data was divided into training data and test data. Training data consisted of external factors and clustered number between 2008 and 2011. Test data was daily data of external factors in 2012. Decision tree, random forest, Support vector machine, and Naive Bayes were used. As a result, Gaussian model based clustering and random forest showed the best prediction performance when the number of cluster was 8.
Journal of the Korea Society of Computer and Information
/
v.3
no.2
/
pp.131-138
/
1998
In usual statistical data analysis, we describe statistical data by exact values. However, in modem complex and large-scale systems, it is difficult to treat the systems using only exact data. In this paper, we define these data as fuzzy data(ie. Linguistic variable applied to make the member-ship function.) and Propose a new method to get an analysis of fuzzy survey data based on the maximum entropy Principle. Also, we propose a new method of discrimination by measuring distance between a distribution of the stable state and estimated distribution of the present state using the Kullback - Leibler information. Furthermore, we investigate the validity of our method by computer simulations under realistic situations.
Proceedings of the Computational Structural Engineering Institute Conference
/
2011.04a
/
pp.27-31
/
2011
차량의 대형화 및 고속화, 그리고 기존 교량의 노후화를 고려하였을 때, 교량의 건전성 평가는 매우 중요해지고 있다. 거동을 예측하는데 사용되는 유한요소 모델의 신뢰도는 이상적인 가정과 모델링 오차, 교량의 노후화 등에 의해 실제 거동을 반영하지 못하는 경우가 많다. 유한요소 모델의 신뢰도를 높이기 위해, 실제 교량의 거동을 계측하여, 이를 기반으로 물리적 의미를 가지는 변수들과 지점의 조건을 수정하는 모델의 개선이 주로 행해진다. 이러한 모델 개선은 최적화 기법을 통해 수행된다. 본 연구에서는 목적함수간 가중치에 의한 모델 개선 결과의 영향과 다중 목적 함수 최적화 기법을 통해, 가중치의 영향을 줄이고, 다양한 개선 모델들을 구하는데 적용하였다. 팔곡 3교의 실제 계측 데이터를 이용하여 단일 다중 목적 함수 기반의 모델 개선을 수행하였다. 단일 목적 함수의 경우, 정의되는 목적함수는 주로 고유진동수와 모드 형상에 관한 차이의 가중치 합으로 표현되어 지며, 이러한 가중치에 따라, 모델 개선의 결과에 영향을 가함을 확인하였다. 다중 목적 함수 기반의 모델 개선을 통해, 구해진 모델 개선 결과를 단일 목적 함수 기반 모델 개선의 결과들과 비교하였으며, 모델 개선에 대한 다중 목적 함수 최적화 적용을 분석하였다.
Kim, Dae Han;Choi, KwangHoon;Kim, Kangseok;Kim, Jai-Hoon
Proceedings of the Korea Information Processing Society Conference
/
2018.10a
/
pp.82-84
/
2018
본 논문은 이더리움 네트워크에 트랜잭션 발행 시 발생하는 부하(비용)을 줄이기 위해 스마트 콘트랙트를 효율적으로 구성하는 방식에 대해 연구한다. 이더리움 네트워크에 부하를 줄이기 위해서는 발생되는 트랜잭션의 양도 중요하지만 발생하는 트랜잭션의 크기가 작은 효율적인 스마트 콘트랙트 배포와 간단한 구조를 가진 함수를 호출하는 것도 중요하다. 그렇기 때문에 이더리움 스마트 콘트랙트의 구조에 따른 성능 평가를 진행하여 최적의 성능을 보이는 스마트 컨트랙트 구성 방법에 대해 연구를 진행한다. 최적의 성능은 동일한 데이터를 넣을 수 있는 상황에 대해 평가하며 평가 방식은 데이터를 블록체인에 저장 할 때 발생하는 가스 비용 비교를 통해 결정한다. 스마트 콘트랙트의 성능 평가 항목으로는 콘트랙트 배포와 함수 호출시 데이터의 구조, 개수에 따른 가스 비용의 비교 분석을 통해 최저의 가스 비용으로 함수 호출 및 스마트 콘트랙트 생성 및 배포 시키는 구조에 대해 연구를 진행한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.