• Title/Summary/Keyword: 할박 배열

Search Result 2, Processing Time 0.018 seconds

Characteristic Analysis of Double sided Slotless Halbach Array Permanent Magnet Linear Generator with Three Phases Concentrated Winding of Cored Type by using Analytical Method (해석적 방법을 이용한 3상 집중권 권선을 갖는 양측식 슬롯리스 고정자 Halbach 배열 영구자석 선형 발전기의 특성해석)

  • Seo, Sung-Won;Choi, Jang-Young;Hong, Keyyong;Kim, Kyong-Hwan
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.2
    • /
    • pp.58-65
    • /
    • 2015
  • This paper deals with the generating characteristic analysis of permanent magnet linear generator (PMLG) with double-sided Halbach magnet array mover and three phases concentrated stator windings by using analytical method. On the basis of a magnetic vector potential and Maxwell's equations, governing equations are obtained, and magnetization modeling for Halbach magnet array is performed analytically by using the Fourier series. And then, we obtain electrical parameters such as back-EMF constant, resistance, and coil inductance based on magnetic field calculations. Finally, analytical results for generating performance are confirmed by comparing with finite element analysis results.

Design of Wave Energy Extractor with a Linear Electric Generator -Part II. Linear Generator (선형발전기가 탑재된 파랑에너지 추출장치 설계 -II. 선형발전기)

  • Cho, Il Hyoung;Choi, Jang Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.3
    • /
    • pp.174-181
    • /
    • 2014
  • Design procedure of LEG(Linear Electric Generator) is introduced by performing the time-domain analysis for the heaving motion of a floating buoy coupled with LEG. A vertical truncated buoy is selected as a point absorber and a double-sided Halbach array mover and cored slotless stator is adopted as a linear electric generator. LEG with a double-sided Halbach array mover and cored slotless stator is designed with the input data such as the heave motion velocity and wave exciting forces in time-domain. The validity of designed LEG is confirmed by performing generating-characteristic-analysis under the sinusoidal motion of a buoy, based on the numerical techniques such as FE(Finite Element) analysis. In particular, an ECM(Equivalent Circuit Method) is employed as the design tool for the prediction of generating characteristics under irregular wave conditions. Finally, we confirm that the ECM gives reasonable and fast results without sacrifice of accuracy.