• Title/Summary/Keyword: 할로겐 광중합

Search Result 42, Processing Time 0.018 seconds

THE TEMPERATURE RISING IN PULP CHAMBER DURING COMPOSITE RESIN POLYMERIZATION (광중합 기전에 따른 복합레진 중합 시 치수강 내 온도변화)

  • Hwang, Dong-Hwan;Lee, Ju-Hyun;Park, Ho-Won
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.3
    • /
    • pp.431-438
    • /
    • 2003
  • This study investigates pulp chamber temperature rise during composite resin polymerization by plasma arc(Group III : Flipo 3 sec, Group IV : Flipo 5 sec) and LED curing units(Group V : Lux-O-Max, 40 sec) as well as conventional halogen lamp curing units(Group I : VIP mode3, 20 sec, Group II : VIP mode6, 20 sec). The results are as follows : 1. All of the investigated pulp chamber temperature rises are lower than the boundary temperature could result in irreversible damage to the pulpal tissue ($5.5^{\circ}C$). 2. In the group II, it is found the significantly higher pulp chamber temperature rise than any other groups(p<0.05). 3. In the group of composite resin light-cured with VIP, it is found the significantly higher pulp chamber temperature rise in the group II than group I(p<0.05). 4. In the group of composite resin light-cured with Flipo, it is found the significantly higher pulp chamber temperature rise in the group IV than group III (p<0.05). 5. In the case of comparing VIP and Flipo, group II is significantly higher pulp chamber temperature rise than group III, IV(p<0.05), and group IV is significantly higher pulp chamber temperature rise than group I(p<0.05), and it does not significantly differ between group I and III. 6. In the group of composite resin light-cured with Lux-O-Max, it is found the significantly lower pulp chamber temperature rise than any other groups (p<0.05).

  • PDF

COMPARISON OF LINEAR POLYMERIZATION SHRINKAGE IN COMPOSITES AND COMPOMER POLYMERIZED BY PLASMA ARC OR CONVENTIONAL VISIBLE LIGHT CURING (리노미터를 이용한 할로겐 가시광선 광조사기와 플라즈마 아크 광조사기의 복합레진 및 컴포머의 광중합 양상 비교)

  • Lee, Jae-Ik;Park, Sung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.5
    • /
    • pp.488-492
    • /
    • 2002
  • The purpose of this study was to evaluate the effectiveness of plasma arc curing (PAC) unit for composite and compomer curing. To compare its effectiveness with conventional quartz tungsten halogen (QTH) light curing unit, the polymerization shrinkage rates and amounts of three composites (Z100, Z250, Synergy Duo Shade) and one compomer, that had been light cured by PAC unit or QTH unit, was compared using a custome made linometer. The measurement of polymerization shrinkage was peformed after polymerization with either QTH unit or PAC unit. In case of curing with the PAC unit, the composite was light cured with Apollo 95E for 6s, the power density of which was recorded as 1350 mW/$\textrm{cm}^2$ by Coltolux Light Meter. For light curing with QTH unit, the composite was light cured for 30s with the XL2500, the power density of which was recorded as 800 mW/$\textrm{cm}^2$ by Coltolux Light Meter. The amount of linear polymerization shrinkage was recorded in the computer every 0.5s for 60s. Ten measurements were made for each material. The amount of linear polymerization shrinkage for each material in 10s and 60s which were cured with PAC or QTH unit were compared with t test. The amount of polymerization shrinkage in the tested materials were compared with 1way ANOVA with Duncan's multiple range test. As for the amounts of polymerization shrinkage in 60s, there was no difference between PAC unit and QTH unit in Z250 and Synergy Duo Shade. In Z100 and Dyract AP, it was lower when it was cured with PAC unit than when it was cured with QTH unit (p<0.05). As for the amounts of polymerization shrinkage in 10s, there was no difference between PAC unit and QTH unit in Z100 and Dyract AP. The amounts of polymerization shrinkage was significantly higher when it was cured with PAC unit in Z250 and Synergy Duo Shade (p<0.05). The amounts of polymerization shrinkage in the tested materials when they were cured with QTH unit were Z250 (6.6um) < Z100 (9.3um), Dyract AP (9.7um) < Synergy Duo Shade (11.2um) (p<0.05). The amount of polymerization shrinkage when the materials were cured with PAC unit were Dyract AP (5.6um) < Z100 (8.1um), Z250(7.0um) < Synergy Duo Shade (11.2um) (p<0.05).