• Title/Summary/Keyword: 한글자연어처리

Search Result 394, Processing Time 0.024 seconds

Various Paraphrase Generation Using Sentence Similarity (문장 유사도를 이용한 다양한 표현의 패러프레이즈 생성)

  • Park, Da-Sol;Chang, Du-Seong;Cha, Jeong-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.576-581
    • /
    • 2021
  • 패러프레이즈란 어떤 문장을 같은 의미를 가지는 다른 단어들을 사용하여 표현한 것들을 의미한다. 이는 정보 검색, 다중 문서 요약, 질의응답 등 여러 자연어 처리 분야에서 중요한 역할을 한다. 특히, 양질의 패러프레이즈 코퍼스를 얻는 것은 많은 시간 및 비용이 소요된다. 이러한 문제점을 해소하기 위해 본 논문에서는 문장 유사도를 이용한 패러프레이즈 쌍을 구축하고, 또 구축한 패러프레이즈 쌍을 이용하여 기계 학습을 통해 새로운 패러프레이즈을 생성한다. 제안 방식으로 생성된 패러프레이즈 쌍은 기존의 구축되어 있는 코퍼스 내 나타나는 표현들로만 구성된 페러프레이즈 쌍이라는 단점이 존재한다. 이러한 단점을 해소하기 위해 기계 학습을 이용한 실험을 진행하여 새로운 표현에 대한 후보군을 추출하는 방법을 적용하여 새로운 표현이라고 볼 수 있는 후보군들을 추출하여 기존의 코퍼스 내 새로운 표현들이 생성된 것을 확인할 수 있었다.

  • PDF

A Comparative Study on the Performance of Korean Sentence Embedding (Word2Vec, GloVe 및 RoBERTa 등의 모델을 활용한 한국어 문장 임베딩 성능 비교 연구)

  • Seok, Juree;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.444-449
    • /
    • 2021
  • 자연어처리에서 임베딩이란 사람의 언어를 컴퓨터가 이해할 수 있는 벡터로 변환한 것으로 자연어처리의 필수 요소 중 하나이다. 본 논문에서는 단어 기반 임베딩인 Word2Vec, GloVe, fastText와 문장 기반 임베딩 기법인 BERT와 M-USE, RoBERTa를 사용하여 한국어 문장 임베딩을 만들어 NSMC, KorNLI, KorSTS 세 가지 태스크에 대한 성능을 확인해보았다. 그 결과 태스크에 따라서 적합한 한국어 문장 임베딩 기법이 달라지며, 태스크에 따라서는 BERT의 평균 임베딩보다 GloVe의 평균 임베딩과 같은 단어 기반의 임베딩이 좋은 성능을 보일 수 있음을 확인할 수 있었다.

  • PDF

Controlled Korean Style Transfer using BERT (BERT을 이용한 한국어 문장의 스타일 변화)

  • Lee, Joosung;Oh, Yeontaek;Byun, hyunjin;Min, Kyungkoo
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.395-399
    • /
    • 2019
  • 생성 모델은 최근 단순히 기존 데이터를 증강 시키는 것이 아니라 원하는 속성을 가지도록 스타일을 변화시키는 연구가 활발히 진행되고 있다. 스타일 변화 연구에서 필요한 병렬 데이터 세트는 구축하는데 많은 비용이 들기 때문에 비병렬 데이터를 이용하는 연구가 주를 이루고 있다. 이러한 방법론으로 이미지 분야에서 대표적으로 cycleGAN[1]이 있으며 최근 자연어 처리 분야에서도 많은 연구가 진행되고 있다. 많은 논문들이 사용하는 데이터도메인은 긍정 문장과 부정 문장 사이를 변화시키는 것이다. 본 연구에서는 한국어 영화리뷰 데이터 세트인 NSMC[2]를 이용한 감성 변화를 하는 문장생성에 대한 연구로 자연어 처리에서 좋은 성능을 보여주는 BERT[8]를 생성모델에 이용하였다.

  • PDF

Korean Chemical Named Entity Recognition in Patent Documents (특허문서의 한국어 화합물 개체명 인식)

  • Jinseop Shin;Kyung-min Kim;Seongchan Kim;Mun Yong Yi
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.522-524
    • /
    • 2023
  • 화합물 관련 한국어 문서는 화합물 정보를 추출하여 그 용도를 발견할 수 있는 중요한 문서임에도 불구하고 자연어 처리를 위한 말뭉치의 구축이 되지 않아서 활용이 어려웠다. 이 연구에서는 최초로 한국 특허 문서에서 한국어 화합물 개체명 인식(Chemical Named Entity Recognition, CNER)을 위한 말뭉치를 구축하였다. 또한 구축된 CNER 말뭉치를 기본 모델인 Bi-LSTM과 KorBERT 사전학습 모델을 미세 조정하여 개체명 인식을 수행하였다. 한국어 CNER F1 성능은 Bi-LSTM 기반 모델이 83.71%, KoCNER 말뭉치를 활용하는 자연어 처리 기술들은 한국어 논문에 대한 화합물 개체명 인식으로 그 외연을 확대하고, 한국어로 작성된 화합물 관련 문서에서 화합물 명칭뿐만 아니라 물성, 반응 등의 개체를 추출하고 관계를 규명하는데 활용 될 수 있을 것이다.

  • PDF

Natural Language-based Immersive English Tutoring System (자연어 대화 기반 몰입환경 영어 교육 시스템)

  • Lee, Kyusong;Lee, Sungjin;Lee, Jonghoon;Noh, Hyeongjong;Lee, Gary Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.22-27
    • /
    • 2010
  • 최근 국가적 차원에서 영어교육에 대한 많은 투자가 이루어지고 있으나 기존의 주입식, 암기식 영어 교육은 회화 실력 향상에 큰 도움을 주지 못하였다. 컴퓨터를 이용한 영어교육 또한 많은 관심을 얻고 있으나 실제 의사소통을 위한 회화 학습에 대한 고려는 깊지 않으며, 주어진 흐름의 대본을 따라 단순히 읽고 반복하는 수준의 시스템만 존재하고 있다. 이러한 학습형태는 흥미 유발 동기가 약하여 사용자로 하여금 장기간 꾸준히 학습하게 만들지 못한다는 문제가 있다. 이러한 문제점에 대하여 제2언어 습득 이론에 바탕을 둔 자연어 처리 기반 몰입 환경 영어 교육 시스템을 제안한다. 이는 도메인 확장성이 뛰어난 예제 기반 대화 시스템을 3 차원 가상공간과 결합한 시스템으로 자연스러운 대화를 통한 외국어 회화 연습을 하는 과정에서 학습자의 발화 오류를 분석하고 교육적 피드백을 제공한다. 또한 현실과 비슷한 몰입 환경에서 체험형 기술을 통해 자발적인 학습을 유도하고 집중력, 기억력을 획기적으로 높이고자 한다. 본 논문에서는 영어교육 시스템의 이론적 배경, 예제 기반 대화관리, 시스템 구성요소와 동작에 대하여 중점적으로 기술하였다.

  • PDF

RNN Sentence Embedding and ELM Algorithm Based Domain and Dialogue Acts Classification for Customer Counseling in Finance Domain (RNN 문장 임베딩과 ELM 알고리즘을 이용한 금융 도메인 고객상담 대화 도메인 및 화행분류 방법)

  • Oh, Kyo-Joong;Park, Chanyong;Lee, DongKun;Lim, Chae-Gyun;Choi, Ho-Jin
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.220-224
    • /
    • 2017
  • 최근 은행, 보험회사 등 핀테크 관련 업체에서는 챗봇과 같은 인공지능 대화 시스템을 고객상담 업무에 도입하고 있다. 본 논문에서는 금융 도메인을 위한 고객상담 챗봇을 구현하기 위하여, 자연어 이해 기술 중 하나인 고객상담 대화의 도메인 및 화행분류 방법을 제시한다. 이 기술을 통해 자연어로 이루어지는 상담내용을 이해하고 적합한 응답을 해줄 수 있는 기술을 개발할 수 있다. TF-IDF, LDA, 문장 임베딩 등 대화 문장에 대한 자질을 추출하고, 추출된 자질을 Extreme learning machine(ELM)을 통해 도메인 및 화행 분류 모델을 학습한다.

  • PDF

A Natural Language Information Retrieval Model using Automatic Network and Two-level Document Ranking (자동 키워드망과 2단계 문서 순위 결정에 의한 자연어 정보검색 모델)

  • Kang, Hyun-Kyu;Park, Se-Young;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 1995.10a
    • /
    • pp.8-12
    • /
    • 1995
  • 본 논문은 정보검색에서 사용자에게 순서화된 문서를 제시하기 이전에 1차로 검색된 문서들에 대하여 자동 키워드망과 2단계로 문서 순위 결정하는 모델에 대하여 논하였다. 자연어 검색을 위한 색인은 자동으로 구축된 키워드 색인으로 1차로 자연어 검색을 하고, 2차로 자동 키워드망을 이용한 순위재조정을 통해 검색효율의 향상에 관해 검색 효율을 평가하여 1차 검색 결과보다 최대 10.9%의 검색효율 향상을 보였다. 또한 문서 순위 조정 방법에 있어서 여러 가지 공식을 비교 분석하였으며 내용 검색을 반영하는 공식을 찾았다. 본 논문에서 제시한 2단계 순위 결정 방법은 리스트를 기반으로 하는 정보 검색의 분야에 적용되어 검색효율을 높일 수 있는 한가지 방법이 될 수 있을 것이다.

  • PDF

Goal Oriented Dialogue System Based on Deep Recurrent Q Network (심층 순환 Q 네트워크 기반 목적 지향 대화 시스템)

  • Park, Geonwoo;Kim, Harksoo
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.147-150
    • /
    • 2018
  • 목적 지향 대화 시스템은 자연어 이해, 대화 관리자, 자연어 생성과 같은 세분화 모델들의 결합으로 이루어져있어 하위 모델에 대한 오류 전파에 취약하다. 이러한 문제점을 해결하기 위해 자연어 이해 모델과 대화 관리자를 하나의 네트워크로 구성하고 오류에 강건한 심층 Q 네트워크를 제안한다. 본 논문에서는 대화의 전체 흐름을 파악 할 수 있는 순환 신경망인 LSTM에 심층 Q 네트워크 적용한 심층 순환 Q 네트워크 기반 목적 지향 대화 시스템을 제안한다. 실험 결과, 제안한 심층 순환 Q 네트워크는 LSTM, 심층 Q 네트워크보다 각각 정밀도 1.0%p, 6.7%p 높은 성능을 보였다.

  • PDF

Rule-Based Temporal Information Extraction for Korean (규칙 기반 한국어 시간 정보 추출)

  • Jeong, Young-Seob;Do, Hyo-Jin;Lim, Joon-Ho;Choi, Ho-Jin
    • Annual Conference on Human and Language Technology
    • /
    • 2014.10a
    • /
    • pp.242-246
    • /
    • 2014
  • 웹을 비롯한 다양한 곳에서 기하급수적으로 증가하고 있는 문서들로 인해, 자연어 텍스트로부터의 지식추출의 중요성이 점차 커지고 있다. 이 연구에서는 한국어로 작성된 자연어 텍스트로부터의 시간 정보 추출을 위해 개발된 시스템을 소개하고, 직접 구축한 한국어 데이터셋에 대한 성능 분석을 제공한다. 이 시스템은 사람이 직접 작성한 규칙들에 기반하여 작동하지만, 질의응답시스템 등에 적용될 수 있는 수준의 성능으로 향상시키기 위해 기계학습 기반의 시스템으로 업그레이드하는 등의 작업을 계속할 것이다.

  • PDF

DBpedia Ontology Population Coverage Enhancement with FrameNet (프레임넷을 통한 디비피디아 온톨로지 인스턴스 생성의 커버리지 개선)

  • Hahm, Younggyun;Seo, Jiwoo;Hwang, Dosam;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2014.10a
    • /
    • pp.32-37
    • /
    • 2014
  • 비구조 텍스트로부터 지식을 추출하여 온톨로지 기반 지식베이스를 구축하는 연구가 최근 국내외로 다양하게 진행되고 있다. 이러한 목적을 달성하기 위해서는 자연어 텍스트에서 나타난 지식요소들의 다양한 속성들을 표현할 수 있는 온톨로지를 필요로 한다. 디비피디아 역시 위키피디아의 지식들을 표현하기 위하여 디비피디아 온톨로지를 사용한다. 그러나 디비피디아 온톨로지는 위키피디아의 인포박스에 기반한 온톨로지로서, 요약된 정보를 설명하기에는 적합할 수 있으나 자연어 텍스트로 표현된 다양한 지식표현을 충분히 커버하는 것은 보증되지 않는다. 본 논문에서는 자연어 텍스트로 쓰여진 지식을 디비피디아 온톨로지가 충분히 표현할 수 있는지를 검토하고, 또한 그 불완전성을 프레임넷이 어느정도까지 보완할 수 있는지를 살핀다. 이를 통해 한국어 텍스트로부터 지식베이스를 자동구축하는 온톨로지 인스턴스 자동생성 연구의 방향으로서 디비피디아 온톨로지와 프레임넷의 효용성을 전망한다.

  • PDF