• 제목/요약/키워드: 한글자연어처리

검색결과 394건 처리시간 0.024초

자연어 추론에서의 교차 검증 앙상블 기법 (Cross-Validated Ensemble Methods in Natural Language Inference)

  • 양기수;황태선;오동석;박찬준;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.8-11
    • /
    • 2019
  • 앙상블 기법은 여러 모델을 종합하여 최종 판단을 산출하는 기계 학습 기법으로서 딥러닝 모델의 성능 향상을 보장한다. 하지만 대부분의 기법은 앙상블만을 위한 추가적인 모델 또는 별도의 연산을 요구한다. 이에 우리는 앙상블 기법을 교차 검증 방법과 결합하여 앙상블 연산을 위한 비용을 줄이며 일반화 성능을 높이는 교차 검증 앙상블 기법을 제안한다. 본 기법의 효과를 입증하기 위해 MRPC, RTE 데이터셋과 BiLSTM, CNN, BERT 모델을 이용하여 기존 앙상블 기법보다 향상된 성능을 보인다. 추가로 교차 검증에서 비롯한 일반화 원리와 교차 검증 변수에 따른 성능 변화에 대하여 논의한다.

  • PDF

Deep Prompt Tuning 기반 한국어 질의응답 기계 독해 (Deep Prompt Tuning based Machine Comprehension on Korean Question Answering)

  • 김주형;강상우
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.269-274
    • /
    • 2023
  • 질의응답 (Question Answering)은 주어진 질문을 이해하여 그에 맞는 답변을 생성하는 자연어 처리 분야의 핵심적인 기계 독해 작업이다. 현재 대다수의 자연어 이해 작업은 사전학습 언어 모델에 미세 조정 (finetuning)하는 방식으로 학습되고, 질의응답 역시 이러한 방법으로 진행된다. 하지만 미세 조정을 통한 전이학습은 사전학습 모델의 크기가 커질수록 전이학습이 잘 이루어지지 않는다는 단점이 있다. 게다가 많은 양의 파라미터를 갱신한 후 새로운 가중치들을 저장하여야 한다는 용량의 부담이 존재한다. 본 연구는 최근 대두되는 deep prompt tuning 방법론을 한국어 추출형 질의응답에 적용하여, 미세 조정에 비해 학습시간을 단축시키고 적은 양의 파라미터를 활용하여 성능을 개선했다. 또한 한국어 추출형 질의응답에 최적의 prompt 길이를 최적화하였으며 오류 분석을 통한 정성적인 평가로 deep prompt tuning이 모델 예측에 미치는 영향을 조사하였다.

  • PDF

문서 요약 데이터셋을 이용한 생성형 근거 추론 방법 (Generative Evidence Inference Method using Document Summarization Dataset)

  • 장예진;장영진;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.137-140
    • /
    • 2023
  • 자연어처리는 인공지능 발전과 함께 주목받는 분야로 컴퓨터가 인간의 언어를 이해하게 하는 기술이다. 그러나 많은 인공지능 모델은 블랙박스처럼 동작하여 그 원리를 해석하거나 이해하기 힘들다는 문제점이 있다. 이 문제를 해결하기 위해 설명 가능한 인공지능의 중요성이 강조되고 있으며, 활발히 연구되고 있다. 연구 초기에는 모델의 예측에 큰 영향을 끼치는 단어나 절을 근거로 추출했지만 문제 해결을 위한 단서 수준에 그쳤으며, 이후 문장 단위의 근거로 확장된 연구가 수행되었다. 하지만 문서 내에 서로 떨어져 있는 근거 문장 사이에 누락된 문맥 정보로 인하여 이해에 어려움을 줄 수 있다. 따라서 본 논문에서는 사람에게 보다 이해하기 쉬운 근거를 제공하기 위한 생성형 기반의 근거 추론 연구를 수행하고자 한다. 높은 수준의 자연어 이해 능력이 필요한 문서 요약 데이터셋을 활용하여 근거를 생성하고자 하며, 실험을 통해 일부 기계독해 데이터 샘플에서 예측에 대한 적절한 근거를 제공하는 것을 확인했다.

  • PDF

카이제곱 통계량을 이용한 이슈 단어 추출 (Issue Word Extraction Using Chi-square Statistics)

  • 신준수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2014년도 제26회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.225-227
    • /
    • 2014
  • 최근 온라인 뉴스는 대중의 관심사 및 트렌드에 따라서 다양한 종류의 기사들이 작성된다. 이러한 관심사 및 트렌드는 시간의 흐름에 따라 계속 변한다. 본 논문에서는 온라인 뉴스의 기사 제목을 이용하여 시간에 따라 변하는 관심사 및 트렌드와 관련된 단어를 추출하는 방법을 제안한다. 특정 기간 별 출현하는 뉴스들을 하나의 카테고리로 가정하고 자질 선택 방법에서 널리 사용되는 카이제곱 통계량을 이용하여 각 카테고리의 주요 단어를 추출한다. 실험 결과 특정 기간 별 관심사 및 트렌드와 관련된 단어들이 출현하는 것을 확인하였다.

  • PDF

KoBERT를 활용한 한국 드라마 대본 대사 성별 구분 (Gender classification of Korean drama script lines using KoBERT)

  • 이세희;선금규
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.470-472
    • /
    • 2022
  • 최근 글로벌 OTT 서비스에서 한국드라마가 세계적 인기를 얻음에 따라 드라마 콘텐츠의 가치가 높아지고 있다. 드라마 대본은 드라마 제작에 있어서 핵심이 되는 데이터로, 특히 대사에는 인물의 특성이 잘 나타나 있다. 본 논문에서는 KoBERT 모델을 활용해 드라마 대사에서 인물의 특성 중 하나인 성별을 구분하고 실험 결과를 제시한다. KoBERT 모델로 대사의 성별을 분류한 뒤, 콘텐츠 분석과 인공지능 창작 측면에서의 활용 가능성에 대해 논의한다.

  • PDF

FastText 와 BERT 를 이용한 자동 용어 추출 (FastText and BERT for Automatic Term Extraction)

  • 최규현;나승훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.612-616
    • /
    • 2021
  • 자연어 처리의 다양한 task 들을 잘 수행하기 위해서 텍스트 내에서 적절한 용어를 골라내는 것은 중요하다. 텍스트에서 적절한 용어들을 자동으로 추출하기 위해 다양한 모델들을 학습시켜 용어의 특성을 잘 반영하는 n 그램을 추출할 수 있다. 본 연구에서는 기존에 존재하는 신경망 모델들을 조합하여 자동 용어 추출 성능을 개선할 수 있는 방법들을 제시하고 각각의 결과들을 비교한다.

  • PDF

뉴럴-심볼릭 구조 기반의 관계 추출 (Relation Extraction based on Neural-Symbolic Structure)

  • 오진영;차정원
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.115-118
    • /
    • 2020
  • 딥러닝은 자연어처리 분야에서 우수한 성능을 보이고 있다. 하지만 우수한 성능을 달성하려면 많은 학습 데이터와 오랜 학습 시간이 필요하다. 우리는 딥러닝과 기호 규칙을 함께 사용하는 뉴럴-심볼릭 방법을 이용하여 딥러닝만으로 학습한 모델의 성능을 능가하는 방법을 제안한다. 딥러닝의 한계를 극복하기 위해서 관계추출에서 규칙 결과와 딥러닝 결과와의 불일치도를 추가한 구조를 설계하였다. 제안한 구조는 한국어 데이터에 대해서 우수한 성능을 보였으며, 빠른 성능 수렴이 이루어지는 것을 확인하였다.

  • PDF

자연어 질의응답 시스템을 위한 is-a 관계 패턴의 구축과 활용 (Extracting and Utilizing is-a Relation Patterns for Question Answering System)

  • 심보준;고영중;김학수;서정연
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2004년도 제16회 한글.언어.인지 한술대회
    • /
    • pp.181-188
    • /
    • 2004
  • 대다수의 개방영역 자연어 질의응답 시스템은 답을 선택할 수 있는 개념영역을 미리 정의하고 있기 때문에 시스템이 준비하지 못한 범주의 개념을 묻는 질의문에 대해서는 올바른 응답을 생성하지 못하거나 예외 처리 방식으로 응답을 생성해 낸다. 본 논문에서는 전형적인 범주에 속하지 않는 명사 개념에 관한 질의문에 대해 범용적으로 대응할 수 있는 개방영역 자연어 질의응답 시스템을 제안한다. 제안하는 시스템은 상위 개념 명사구(Hypernym)에 포함되는 하위 개념의 명사구(Hyponym)들을 추출할 수 있는 일반적인 패턴들을 그 신뢰도와 함께 가지고 있다. 따라서 질의문이 임의의 명사구 개념을 요청할 때 정답의 후보들을 동적으로 생성되는 가상의 is-a 의미관계 사전으로부터 신뢰 순위로 정렬하여 추출해 낼 수가 있다. 제안하는 시스템은 "What 명사구 동사구" 형태의 질의문들 중에서 개체명 인식기나 시소러스를 이용하여 정답 후보를 손쉽게 생성할 수 있는 질의문을 배제한 실험용 질의문 집합을 이용한 실험에서 42%의 재현율을 보였다.

  • PDF

SaJuTeller: 조건부 생성 모델을 기반으로 한 인공지능 사주 풀이 모델 (SaJuTeller: Conditional Generation Deep-Learning based Fortune Telling Model)

  • 문현석;이정섭;서재형;어수경;박찬준;김우현;박정배;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.277-283
    • /
    • 2022
  • 사주 풀이란 주어진 사주에 대해서 그에 맞는 해석 글을 생성해주는 작업을 의미한다. 전통적으로 사주 풀이는 온전한 사람의 영역으로 인식되어왔으나, 우리는 본 연구를 통해 사주 풀이 영역도 인공지능으로 대체할 수 있을 것이라는 가능성을 탐구한다. 본 연구에서 우리는 최근 연구되고 있는 자연어 생성분야의 연구들에서 영감을 받아, 사주 유형과 사주 풀이 내에 포함할 명사 키워드를 기반으로 풀이글을 생성하는 인공지능 모델 SaJuTeller를 설계한다. 특히 이전 문맥을 고려하여 풀이글을 생성하는 모델과 단순 사주 유형 및 명사 키워드를 기반으로 풀이글을 생성하는 두가지 모델을 제안하며, 이들 각각의 성능을 분석함으로써 각 모델의 구체적인 활용 방안을 제안한다. 본 연구는 우리가 아는 한 최초의 인공지능 기반 사주풀이 연구이며, 우리는 이를 통해 사주풀이에 요구되는 전문인력의 노력을 경감시킴과 동시에, 다양한 표현을 가진 사주 풀이 글을 생성할 수 있음을 제안한다.

  • PDF

시간적 관계정보를 활용한 멀티태스크 심층신경망 모델 학습 기법 (Multi-task Learning Approach for Deep Neural Networks Using Temporal Relations)

  • 임채균;오교중;최호진
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.211-214
    • /
    • 2021
  • 다수의 태스크를 처리 가능하면서 일반화된 성능을 제공할 수 있는 모델을 구축하는 자연어 이해 분야의 연구에서는 멀티태스크 학습 기법에 대한 연구가 다양하게 시도되고 있다. 또한, 자연어 문장으로 작성된 문서들에는 대체적으로 시간에 관련된 정보가 포함되어 있을 뿐만 아니라, 문서의 전체 내용과 문맥을 이해하기 위해서 이러한 정보를 정확하게 인식하는 것이 중요하다. NLU 분야의 태스크를 더욱 정확하게 수행하려면 모델 내부적으로 시간정보를 반영할 필요가 있으며, 멀티태스크 학습 과정에서 추가적인 태스크로 시간적 관계정보를 추출하여 활용 가능하다. 본 논문에서는, 한국어 입력문장의 시간적 맥락정보를 활용할 수 있도록 NLU 태스크들의 학습 과정에서 시간관계 추출 태스크를 추가한 멀티태스크 학습 기법을 제안한다. 멀티태스크 학습의 특징을 활용하기 위해서 시간적 관계정보를 추출하는 태스크를 설계하고 기존의 NLU 태스크와 조합하여 학습하도록 모델을 구성한다. 실험에서는 학습 태스크들을 다양하게 조합하여 성능 차이를 분석하며, 기존의 NLU 태스크만 사용했을 경우에 비해 추가된 시간적 관계정보가 어떤 영향을 미치는지 확인한다. 실험결과를 통하여 전반적으로 멀티태스크 조합의 성능이 개별 태스크의 성능보다 높은 경향을 확인하며, 특히 개체명 인식에서 시간관계가 반영될 경우에 크게 성능이 향상되는 결과를 볼 수 있다.

  • PDF