Kim, Un-Yong;Yun, Jeong-Rok;Kim, Hoe-Min;Chun, Sungkuk
Proceedings of the Korean Society of Computer Information Conference
/
2020.07a
/
pp.423-424
/
2020
다양한 환경 변화에 따라 적용 가능한 최적의 위장무늬 개발의 필요성이 증대됨에 따라 위장무늬 성능 평가를 위한 포토시뮬레이션 기술 또한 주목받고 있으나 포토시뮬레이션 저작에 관한 연구는 미비하다. 본 논문에서는 작전환경 이미지 상 위장무늬 이미지의 배치 및 기 배치된 위장무늬의 탐지 시간을 측정하는 소프트웨어인 포토시뮬레이션 기술 개발에 대해 서술한다. 개발된 포토시뮬레이션은 작전환경 및 위장무늬 이미지 로드, 사용자 입력도구를 통한 대상 작전환경 이미지 상 위장무늬 이미지의 배치 및 저작, 저작 된 작전 환경 이미지 상 위장무늬 이미지를 모니터에 출력, 사용자 입력도구를 통한 작전환경 이미지 상 위장무늬 이미지의 탐지 및 탐지 시간 측정 기술을 포함한다. 결과에서는 개발 포토시뮬레이션 기술을 통한 위장무늬 이미지 배치 및 저작, 그리고 위장무늬 이미지의 평균 시간 측정 결과 예시를 보여준다.
We present a real-time photomosaics method for small image set optimized by feature selection method. Photomosaics is an image that is divided into cells (usually rectangular grids), each of which is replaced with another image of appropriate color, shape and texture pattern. This method needs large set of tile images which have various types of image pattern. But large amount of photo images requires high cost for pattern searching and large space for saving the images. These requirements can cause problems in the application to a real-time domain or mobile devices with limited resources. Our approach is a genetic feature selection method for building an optimized image set to accelerate pattern searching speed and minimize the memory cost.
가상 데스크탑 시스템은 단일 물리적 서버상에 가상화 기술을 사용하여 다수의 가상 머신을 실행하고, 이를 네트워크로 연결된 클라이언트에서 사용하는 기술이다. 가상 데스크탑에는 저장장치의 역할을 하는 가상 데스크탑 이미지가 연결되며, 본 이미지에는 운영체제 및 필요한 응용 프로그램이 설치되어 배포된다. 따라서, 새로운 가상 데스크탑을 생성할 때 가상 데스크탑 이미지를 함께 생성해야 하며, 이는 저장장치를 사용한 작업으로 시간이 많이 소요되는 작업이다. 본 논문에서는 이미지 풀을 사용한 빠른 가상 데스크탑 생성 방안을 제안한다. 이미지 풀은 일정 수의 가상 데스크탑 이미지를 포함하고 있으며, 이미지 준비기는 이미지 풀에 있는 이미지의 개수가 일정하게 유지되도록 골든 이미지에서 복사해오는 역할을 담당한다. 가상 데스크탑 생성시, 이미지 풀에서 필요한 이미지를 지연시간 없이 바로 가져옴으로써, 가상 데스크탑 생성에 소요되는 시간을 감소시킬 수 있다.
Lee, Eun Ji;Kang, Isaac;Kim, Min Woo;Park, Seon Ji;Cho, Nam Ik
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.72-75
/
2020
조립 부품 이미지에 해당하는 3D CAD 모델 매칭 기술은 최근 로봇 조립 기술의 발전으로 필요성이 대두되고 있다. 이미지 기반 3 차원 모델 매칭 연구는 진행되어 왔지만 가구 부품 이미지와는 특성이 다른 RGB[5] 이미지나 스케치 이미지를 다루는[1] 접근들이었다. 딥러닝을 사용하는 스케치 이미지 기반 3 차원 물제 검색 연구에서는 대부분 3 차원 이미지를 다각도에서 렌더링한 view 이미지들에서 feature를 추출하고 pooling 하여 하나의 feature를 출력한다. 그러나 기존의 view pooling 방식은 단순한 평균 방식으로, 부품 이미지에 따른 view를 반영하기에는 한계가 있었다. 따라서 본 논문에서는 조립 부품 이미지 기반 3 차원 물체 검색을 위해 query 부품 이미지에 따라 다른 view 이미지에 집중할 수 있는 방식의 attentional view pooling을 제안한다. 또한 조립 부품 데이터의 특성 상 class 당 CAD 모델이 하나인 상황이므로 학습 데이터가 터무니없이 부족하여 이를 해결하기 위한 학습 데이터 증강 방법을 제안한다. 실험은 의자 부품 11가지에 대해 진행하였고 이를 통해 제안하는 방식의 성능을 입증하였다.
모델 역추론 공격은 공격 대상 네트워크를 훈련하기 위해 사용되는 훈련 데이터셋 중 개인 데이터셋을 공개 데이터셋을 사용하여 개인 훈련 데이터셋을 복원하는 것이다. 모델 역추론 방법 중 적대적 생성 신경망을 사용하여 모델 역추론 공격을 하는 과거의 논문들은 딥러닝 모델 전체의 역추론에만 초점을 맞추기 때문에, 이를 통해 얻은 원본 이미지의 개인 데이터 정보는 제한적이다. 따라서, 본 연구는 대상 모델의 중간 출력을 사용하여 개인 데이터에 대한 더 품질 높은 정보를 얻는데 초점을 맞춘다. 본 논문에서는 적대적 생성 신경망 모델이 원본 이미지를 생성하기 위해 사용되는 계층별 역추론 공격 방법을 소개한다. MNIST 데이터셋으로 훈련된 적대적 생성 신경망 모델을 사용하여, 원본 이미지가 대상 모델의 계층을 통과하면서 얻은 중간 계층의 출력 데이터를 기반으로 원본 이미지를 재구성하고자 한다. GMI 의 공격 방식을 참고하여 공격 모델의 손실 함수를 구성한다. 손실 함수는 사전 손실 및 정체성 손실항을 포함하며, 역전파를 통해서 원본 이미지와 가장 유사하게 복원할 수 있는 표현 벡터 Z 를 찾는다. 원본 이미지와 공격 이미지 사이의 유사성을 분류 라벨의 정확도, SSIM, PSNR 값이라는 세 가지 지표를 사용하여 평가한다. 공격이 이루어지는 계층에서 복원한 이미지와 원본 이미지를 세 가지 지표를 가지고 평가한다. 실험 결과, 공격 이미지가 원본 이미지의 대상 분류 라벨을 정확하게 가지며 원본 이미지의 필체를 유사하게 복원하였음을 보여준다. 평가 지표 또한 원본 이미지와 유사하다는 것을 나타낸다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2018.06a
/
pp.272-275
/
2018
본 논문에서는 기존 신경망 기반의 이미지 압축에 많이 사용되었던 신경망인 ResNet 을 대신하여 더 적은 개수의 파라미터를 사용하여 좋은 성능을 낼 수 있는 신경망 구조인 DenseNet 을 이미지 압축에 사용한다. 이미지 압축을 위해 사용되는 신경망 구조는 일반적으로 오토 인코더 구조인데, 병목 층에서 정보 손실이 상당히 많이 발생한다. 따라서 이미지 압축에서 신경망 내에서의 정보 전달은 상당히 중요하다. 기존의 논문에서는 이를 위해 이전의 정보를 그대로 뒤로 전달해주는 구조인 ResNet 을 사용하여 깊은 층에 대해서도 수렴이 잘 되는 결과를 보여주었다. 그러나 많은 수의 파라미터를 사용하는 단점을 해결하기 위해 본 논문에서는 DenseNet 을 이미지 압축에 사용하였고, 병목 층에서의 정보 손실로 인해 이미지의 고주파수 성분이 사라지는 현상을 해결하기 위해 원래 이미지와 JPEG2000 으로 압축한 이미지와의 차이를 추가 입력으로 넣어주어서 주관적인 화질을 개선하였다.
Proceedings of the Korean Information Science Society Conference
/
2004.10b
/
pp.145-147
/
2004
웹 상에서의 자료 검색 방법이 기존의 키워드 검색이나 단순 내용 기반 검색 방법에서 다양한 형태의 의미기반 검색으로 발전하고 있다. 멀티미디어 데이타를 효율적으로 저장, 검색하기 위해서는 표준화된 데이타 구조가 필요하다. 본 논문에서는 멀티미디어 자료 중에서 이미지의 의미기반 검색을 지원하기 위해 기존의 메타데이타 표준안을 반영한 확장성 있는 통합 이미지 메타데이타 구조를 정의하였다. 또한 통합 이미지 메타데이타를 웹 상에서 상호 교환하기 위해 XML 문서 형태로 표현하였으며, 이를 위해 VRA와 통합 이미지 메타데이타에 대한 XML 스키마를 정의하고 통합 이미지 메타데이타 XML 문서 생성기를 작성하였다
Proceedings of the Korean Information Science Society Conference
/
2004.10b
/
pp.709-711
/
2004
이 논문의 목적은 기하급수적으로 늘어나고 있는 이미지 데이터의 효율적인 검색을 위해 텍스처의 특징을 추출하여 이미지를 검색하는 방법을 제시하고, 다중 필터를 이용한 이미지 검색 기술을 보여주는 것이다. 본 논문에서는 텍스처 이미지 분석에 다양하게 이용되고 있는 Gabor Filtering 기술을 이용하여 질의 이미지에 대한 최적 필터를 선택하는 과정과 선택된 필터를 적용하여 최적의 이미지를 검색하는 프로세스를 제시하고자 한다.
Proceedings of the Korea Multimedia Society Conference
/
2001.11a
/
pp.299-302
/
2001
이미지 검색 시스템이란 이미지가 갖는 다양한 특징을 바탕으로 똑같거나 유사한 이미지를 검색하여 제공하는 시스템이다. 본 논문에서는 이미지의 컬러와 형태를 기반으로 한 브랜드 이미지 검색 시스템을 제시한다. 이미지를 영역별로 분할하여 영역별 컬러 분포 히스토그램을 추출하여 컬러 정보로 이용하고 경계면 추출, 무게 중심 추출, angular 샘플링 등의 전처리 과정과 무게 중심으로부터 경계면까지 거리의 합, 표준 편차, 장/단축 비율을 계산하여 형태정보로 이용한다. 이렇게 추출된 컬러와 형태 정보를 이용하여 유사성 측정을 통한 검색을 수행한다.
Proceedings of the Korea Multimedia Society Conference
/
2001.06a
/
pp.177-180
/
2001
본 논문에서는 신경망을 이용한 내용 기반 이미지 분류 방법을 제안한다. 분류 대상이미지는 인터넷상의 다양한 이미지들 중 오브젝트 이미지이대 웹 에이전트를 통하여 획득하고 정규화 과정을 거친다. 획득한 이미지를 분류하기 위한 특징은 웨이블릿 변란 후 추출된 질감 특징이다. 추출된 질감 특징을 이용하여 학습패턴을 생성하고 신경망을 학습한다. 그리고 구성된 신경망 분류기로 이미지를 분류한다. 본 연구에서는 다양한 질감 특징들 중에서 대비(contrast), 에너지(energy), 엔트로피(entropy)를 이용하여 특징을 추출한다. 실험에 사용한 데이터는 30종류에 대하여 각각 10개씩, 300개의 이미지들을 학습 데이터, 테스트 데이터로 사용하여 구성된 분류기의 인식률을 실험하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.