• Title/Summary/Keyword: 한국이미지

Search Result 12,825, Processing Time 0.041 seconds

Development of photo simulation for camouflage pattern evaluation (위장무늬 성능 평가를 위한 포토시뮬레이션 기술 개발)

  • Kim, Un-Yong;Yun, Jeong-Rok;Kim, Hoe-Min;Chun, Sungkuk
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.423-424
    • /
    • 2020
  • 다양한 환경 변화에 따라 적용 가능한 최적의 위장무늬 개발의 필요성이 증대됨에 따라 위장무늬 성능 평가를 위한 포토시뮬레이션 기술 또한 주목받고 있으나 포토시뮬레이션 저작에 관한 연구는 미비하다. 본 논문에서는 작전환경 이미지 상 위장무늬 이미지의 배치 및 기 배치된 위장무늬의 탐지 시간을 측정하는 소프트웨어인 포토시뮬레이션 기술 개발에 대해 서술한다. 개발된 포토시뮬레이션은 작전환경 및 위장무늬 이미지 로드, 사용자 입력도구를 통한 대상 작전환경 이미지 상 위장무늬 이미지의 배치 및 저작, 저작 된 작전 환경 이미지 상 위장무늬 이미지를 모니터에 출력, 사용자 입력도구를 통한 작전환경 이미지 상 위장무늬 이미지의 탐지 및 탐지 시간 측정 기술을 포함한다. 결과에서는 개발 포토시뮬레이션 기술을 통한 위장무늬 이미지 배치 및 저작, 그리고 위장무늬 이미지의 평균 시간 측정 결과 예시를 보여준다.

  • PDF

Image Set Optimization for Real-Time Video Photomosaics (실시간 비디오 포토 모자이크를 위한 이미지 집합 최적화)

  • Choi, Yoon-Seok;Koo, Bon-Ki
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.502-507
    • /
    • 2009
  • We present a real-time photomosaics method for small image set optimized by feature selection method. Photomosaics is an image that is divided into cells (usually rectangular grids), each of which is replaced with another image of appropriate color, shape and texture pattern. This method needs large set of tile images which have various types of image pattern. But large amount of photo images requires high cost for pattern searching and large space for saving the images. These requirements can cause problems in the application to a real-time domain or mobile devices with limited resources. Our approach is a genetic feature selection method for building an optimized image set to accelerate pattern searching speed and minimize the memory cost.

  • PDF

An Image Management System for Fast Virtual Desktop Creation (빠른 가상 데스크탑 생성을 위한 이미지 관리 시스템)

  • Oh, Soo-Cheol;Cho, JungHyun;Kim, DaeWon;Kim, Seon-Uk;Kim, SeongWoon;Kim, HakYoung
    • Annual Conference of KIPS
    • /
    • 2014.11a
    • /
    • pp.14-16
    • /
    • 2014
  • 가상 데스크탑 시스템은 단일 물리적 서버상에 가상화 기술을 사용하여 다수의 가상 머신을 실행하고, 이를 네트워크로 연결된 클라이언트에서 사용하는 기술이다. 가상 데스크탑에는 저장장치의 역할을 하는 가상 데스크탑 이미지가 연결되며, 본 이미지에는 운영체제 및 필요한 응용 프로그램이 설치되어 배포된다. 따라서, 새로운 가상 데스크탑을 생성할 때 가상 데스크탑 이미지를 함께 생성해야 하며, 이는 저장장치를 사용한 작업으로 시간이 많이 소요되는 작업이다. 본 논문에서는 이미지 풀을 사용한 빠른 가상 데스크탑 생성 방안을 제안한다. 이미지 풀은 일정 수의 가상 데스크탑 이미지를 포함하고 있으며, 이미지 준비기는 이미지 풀에 있는 이미지의 개수가 일정하게 유지되도록 골든 이미지에서 복사해오는 역할을 담당한다. 가상 데스크탑 생성시, 이미지 풀에서 필요한 이미지를 지연시간 없이 바로 가져옴으로써, 가상 데스크탑 생성에 소요되는 시간을 감소시킬 수 있다.

Assembly Part Image-based 3D Shape Retrieval using Attentional View Pooling (Attentional View Pooling을 이용한 조립 부품 이미지 기반 3 차원 물체 검색)

  • Lee, Eun Ji;Kang, Isaac;Kim, Min Woo;Park, Seon Ji;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.72-75
    • /
    • 2020
  • 조립 부품 이미지에 해당하는 3D CAD 모델 매칭 기술은 최근 로봇 조립 기술의 발전으로 필요성이 대두되고 있다. 이미지 기반 3 차원 모델 매칭 연구는 진행되어 왔지만 가구 부품 이미지와는 특성이 다른 RGB[5] 이미지나 스케치 이미지를 다루는[1] 접근들이었다. 딥러닝을 사용하는 스케치 이미지 기반 3 차원 물제 검색 연구에서는 대부분 3 차원 이미지를 다각도에서 렌더링한 view 이미지들에서 feature를 추출하고 pooling 하여 하나의 feature를 출력한다. 그러나 기존의 view pooling 방식은 단순한 평균 방식으로, 부품 이미지에 따른 view를 반영하기에는 한계가 있었다. 따라서 본 논문에서는 조립 부품 이미지 기반 3 차원 물체 검색을 위해 query 부품 이미지에 따라 다른 view 이미지에 집중할 수 있는 방식의 attentional view pooling을 제안한다. 또한 조립 부품 데이터의 특성 상 class 당 CAD 모델이 하나인 상황이므로 학습 데이터가 터무니없이 부족하여 이를 해결하기 위한 학습 데이터 증강 방법을 제안한다. 실험은 의자 부품 11가지에 대해 진행하였고 이를 통해 제안하는 방식의 성능을 입증하였다.

  • PDF

Layer-wise Model Inversion Attack (계층별 모델 역추론 공격)

  • Hyun-Ho Kwon;Han-Jun Kim
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.69-72
    • /
    • 2024
  • 모델 역추론 공격은 공격 대상 네트워크를 훈련하기 위해 사용되는 훈련 데이터셋 중 개인 데이터셋을 공개 데이터셋을 사용하여 개인 훈련 데이터셋을 복원하는 것이다. 모델 역추론 방법 중 적대적 생성 신경망을 사용하여 모델 역추론 공격을 하는 과거의 논문들은 딥러닝 모델 전체의 역추론에만 초점을 맞추기 때문에, 이를 통해 얻은 원본 이미지의 개인 데이터 정보는 제한적이다. 따라서, 본 연구는 대상 모델의 중간 출력을 사용하여 개인 데이터에 대한 더 품질 높은 정보를 얻는데 초점을 맞춘다. 본 논문에서는 적대적 생성 신경망 모델이 원본 이미지를 생성하기 위해 사용되는 계층별 역추론 공격 방법을 소개한다. MNIST 데이터셋으로 훈련된 적대적 생성 신경망 모델을 사용하여, 원본 이미지가 대상 모델의 계층을 통과하면서 얻은 중간 계층의 출력 데이터를 기반으로 원본 이미지를 재구성하고자 한다. GMI 의 공격 방식을 참고하여 공격 모델의 손실 함수를 구성한다. 손실 함수는 사전 손실 및 정체성 손실항을 포함하며, 역전파를 통해서 원본 이미지와 가장 유사하게 복원할 수 있는 표현 벡터 Z 를 찾는다. 원본 이미지와 공격 이미지 사이의 유사성을 분류 라벨의 정확도, SSIM, PSNR 값이라는 세 가지 지표를 사용하여 평가한다. 공격이 이루어지는 계층에서 복원한 이미지와 원본 이미지를 세 가지 지표를 가지고 평가한다. 실험 결과, 공격 이미지가 원본 이미지의 대상 분류 라벨을 정확하게 가지며 원본 이미지의 필체를 유사하게 복원하였음을 보여준다. 평가 지표 또한 원본 이미지와 유사하다는 것을 나타낸다.

DenseNet based Image Compression (DenseNet 기반의 이미지 압축)

  • Park, Woonsung;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.272-275
    • /
    • 2018
  • 본 논문에서는 기존 신경망 기반의 이미지 압축에 많이 사용되었던 신경망인 ResNet 을 대신하여 더 적은 개수의 파라미터를 사용하여 좋은 성능을 낼 수 있는 신경망 구조인 DenseNet 을 이미지 압축에 사용한다. 이미지 압축을 위해 사용되는 신경망 구조는 일반적으로 오토 인코더 구조인데, 병목 층에서 정보 손실이 상당히 많이 발생한다. 따라서 이미지 압축에서 신경망 내에서의 정보 전달은 상당히 중요하다. 기존의 논문에서는 이를 위해 이전의 정보를 그대로 뒤로 전달해주는 구조인 ResNet 을 사용하여 깊은 층에 대해서도 수렴이 잘 되는 결과를 보여주었다. 그러나 많은 수의 파라미터를 사용하는 단점을 해결하기 위해 본 논문에서는 DenseNet 을 이미지 압축에 사용하였고, 병목 층에서의 정보 손실로 인해 이미지의 고주파수 성분이 사라지는 현상을 해결하기 위해 원래 이미지와 JPEG2000 으로 압축한 이미지와의 차이를 추가 입력으로 넣어주어서 주관적인 화질을 개선하였다.

  • PDF

A Design and Implementation of Integrated Image Metadata for Semantic-based Image Search (의미기반 이미지 검색을 위한 통합 이미지 메타데이타의 설계 및 구현)

  • 권은영;나연묵
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.145-147
    • /
    • 2004
  • 웹 상에서의 자료 검색 방법이 기존의 키워드 검색이나 단순 내용 기반 검색 방법에서 다양한 형태의 의미기반 검색으로 발전하고 있다. 멀티미디어 데이타를 효율적으로 저장, 검색하기 위해서는 표준화된 데이타 구조가 필요하다. 본 논문에서는 멀티미디어 자료 중에서 이미지의 의미기반 검색을 지원하기 위해 기존의 메타데이타 표준안을 반영한 확장성 있는 통합 이미지 메타데이타 구조를 정의하였다. 또한 통합 이미지 메타데이타를 웹 상에서 상호 교환하기 위해 XML 문서 형태로 표현하였으며, 이를 위해 VRA와 통합 이미지 메타데이타에 대한 XML 스키마를 정의하고 통합 이미지 메타데이타 XML 문서 생성기를 작성하였다

  • PDF

Content-based Image Retrieval Using Multiple Filters (다중 필터를 이용한 내용기반 이미지 검색 기술)

  • 김상수;백성욱;조영기;조주상
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.709-711
    • /
    • 2004
  • 이 논문의 목적은 기하급수적으로 늘어나고 있는 이미지 데이터의 효율적인 검색을 위해 텍스처의 특징을 추출하여 이미지를 검색하는 방법을 제시하고, 다중 필터를 이용한 이미지 검색 기술을 보여주는 것이다. 본 논문에서는 텍스처 이미지 분석에 다양하게 이용되고 있는 Gabor Filtering 기술을 이용하여 질의 이미지에 대한 최적 필터를 선택하는 과정과 선택된 필터를 적용하여 최적의 이미지를 검색하는 프로세스를 제시하고자 한다.

  • PDF

The Brand Image Retrieval system Based on The Color/shape (컬러/형태 기반 브랜드 이미지 검색 시스템)

  • 신성윤;임정훈;강오형;이양원;표성배
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.11a
    • /
    • pp.299-302
    • /
    • 2001
  • 이미지 검색 시스템이란 이미지가 갖는 다양한 특징을 바탕으로 똑같거나 유사한 이미지를 검색하여 제공하는 시스템이다. 본 논문에서는 이미지의 컬러와 형태를 기반으로 한 브랜드 이미지 검색 시스템을 제시한다. 이미지를 영역별로 분할하여 영역별 컬러 분포 히스토그램을 추출하여 컬러 정보로 이용하고 경계면 추출, 무게 중심 추출, angular 샘플링 등의 전처리 과정과 무게 중심으로부터 경계면까지 거리의 합, 표준 편차, 장/단축 비율을 계산하여 형태정보로 이용한다. 이렇게 추출된 컬러와 형태 정보를 이용하여 유사성 측정을 통한 검색을 수행한다.

  • PDF

A Contents-Based Image Classification Using Neural Network (신경망을 이용한 내용 기반 이미지 분류)

  • 이재원;김상균
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.06a
    • /
    • pp.177-180
    • /
    • 2001
  • 본 논문에서는 신경망을 이용한 내용 기반 이미지 분류 방법을 제안한다. 분류 대상이미지는 인터넷상의 다양한 이미지들 중 오브젝트 이미지이대 웹 에이전트를 통하여 획득하고 정규화 과정을 거친다. 획득한 이미지를 분류하기 위한 특징은 웨이블릿 변란 후 추출된 질감 특징이다. 추출된 질감 특징을 이용하여 학습패턴을 생성하고 신경망을 학습한다. 그리고 구성된 신경망 분류기로 이미지를 분류한다. 본 연구에서는 다양한 질감 특징들 중에서 대비(contrast), 에너지(energy), 엔트로피(entropy)를 이용하여 특징을 추출한다. 실험에 사용한 데이터는 30종류에 대하여 각각 10개씩, 300개의 이미지들을 학습 데이터, 테스트 데이터로 사용하여 구성된 분류기의 인식률을 실험하였다.

  • PDF