• 제목/요약/키워드: 한국어 viseme

검색결과 4건 처리시간 0.016초

한국어 모음 입술독해를 위한 시공간적 특징에 관한 연구 (A Study on Spatio-temporal Features for Korean Vowel Lipreading)

  • 오현화;김인철;김동수;진성일
    • 한국음향학회지
    • /
    • 제21권1호
    • /
    • pp.19-26
    • /
    • 2002
  • 본 논문에서는 한국어 입술독해를 위한 기반 연구로서 음성학에 기반하여 음성의 시각적 기본 단위인 viseme을 정의하고 입술의 움직임을 적절히 표현할 수 있는 특징들을 추출하여 그 성능을 분석하였다. 먼저, 다수의 화자로부터 한국어 모음에 해당하는 입술의 동영상 데이터베이스를 획득하고 각모음별 시각적 특성을 분석하여 7개의 한국어 모음 viseme을 정의하였으며 입술 윤곽선상의 특징점과 시공간적 특징 벡터들을 추출하여 은닉 마르코프 모델에 적용함으로써 효과적인 입술독해를 위한 각 특징 벡터별 성능을 비교하였다. 7개의 한국어 각 viseme에 대한 인식 실험 결과에서 입술의 안팎 윤곽선의 정보가 모두 반영된 특징 벡터가 입술독해에 효과적으로 적용될 수 있으며 윤곽선 상의 특징점들의 시간적 움직임 크기와 방향이 입술독해를 위하여 매우 중요한 요소임을 확인할 수 있었다.

음소인식 기반의 립싱크 구현을 위한 한국어 음운학적 Viseme의 제안 (Korean Phonological Viseme for Lip Synch Based on Phoneme Recognition)

  • 주희열;강선미;고한석
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1999년도 학술발표대회 논문집 제18권 1호
    • /
    • pp.70-73
    • /
    • 1999
  • 본 논문에서는 한국어에 대한 실시간 음소 인식을 통한 Lip Synch 구현에 필수요소인 Viseme(Visual Phoneme)을 한국어의 음운학적 접근 방법을 통해 제시하고, Lip Synch에서 입술의 모양에 결정적인 영향을 미치는 모음에 대한 모음 인식 실험 및 결과 분석을 한다.모음인식 실험에서는 한국어 음소 51개 각각에 대해 3개의 State로 이루어진 CHMM (Continilous Hidden Makov Model)으로 모델링하고, 각각의 음소가 병렬로 연결되어진 음소네트워크를 사용한다. 입력된 음성은 12차 MFCC로 특징을 추출하고, Viterbi 알고리즘을 인식 알고리즘으로 사용했으며, 인식과정에서 Bigrim 문법과 유사한 구조의 음소배열 규칙을 사용해서 인식률과 인식 속도를 향상시켰다.

  • PDF

3D 캐릭터에서의 자동 립싱크 MAYA 플러그인 개발 (Development of Automatic Lip-sync MAYA Plug-in for 3D Characters)

  • 이상우;신성욱;정성택
    • 한국인터넷방송통신학회논문지
    • /
    • 제18권3호
    • /
    • pp.127-134
    • /
    • 2018
  • 본 논문에서는 한국어를 기반으로 음성 데이터와 텍스트 정보에서 한국어 음소를 추출하고 분할된 음소들을 사용하여 정확하고 자연스러운 3D 립싱크 애니메이션을 제작하기 위한 오토 립싱크 Maya 플러그인을 개발하였다. 여기서 개발된 시스템에서는 음소 분할은 Microsoft Speech API 엔진 SAPI에서 제공하는 49개의 음소를 참조하여 한글에 사용되는 음소들을 모음 8개, 자음 13개로 분류하였다. 또한 모음과 자음의 발음들은 다양한 입모양을 가지지만 일부 동일한 입모양에 대하여 같은 Viseme을 적용할 수 있도록 구현하였다. 이를 바탕으로 파이썬(Python) 기반의 오토 립싱크 Maya 플러그인을 개발하여 립싱크 애니메이션이 한 번에 자동으로 구현할 수 있게 하였다.

딥러닝을 활용한 한국어 스피치 애니메이션 생성에 관한 고찰 (A Study on Korean Speech Animation Generation Employing Deep Learning)

  • 강석찬;김동주
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권10호
    • /
    • pp.461-470
    • /
    • 2023
  • 딥러닝을 활용한 스피치 애니메이션 생성은 영어를 중심으로 활발하게 연구되어왔지만, 한국어에 관해서는 사례가 없었다. 이에, 본 논문은 최초로 지도 학습 딥러닝을 한국어 스피치 애니메이션 생성에 활용해 본다. 이 과정에서, 딥러닝이 스피치 애니메이션 연구를 그 지배적 기술인 음성 인식 연구로 귀결시킬 수 있는 중요한 효과를 발견하게 되어, 이 효과를 한국어 스피치 애니메이션 생성에 최대한 활용하는 방법을 고찰한다. 이 효과는 연구의 최우선 목표를 명확하게 하여, 근래에 들어 활발하지 않은 한국어 스피치 애니메이션 연구를 효과적이고 효율적으로 재활성화하는데 기여할 수 있다. 본 논문은 다음 과정들을 수행한다: (i) 블렌드쉐입 애니메이션 기술을 선택하며, (ii) 딥러닝 모델을 음성 인식 모듈과 표정 코딩 모듈의 주종 관계 파이프라인으로 구현하고, (iii) 한국어 스피치 모션 캡처 dataset을 제작하며, (iv) 두 대조용 딥러닝 모델들을 준비하고 (한 모델은 영어 음성 인식 모듈을 채택하고, 다른 모델은 한국어 음성 인식 모듈을 채택하며, 두 모델이 동일한 기본 구조의 표정 코딩 모듈을 채택한다), (v) 두 모델의 표정 코딩 모듈을 음성 인식 모듈에 종속되게 학습시킨다. 유저 스터디 결과는, 한국어 음성 인식 모듈을 채택하여 표정 코딩 모듈을 종속적으로 학습시킨 모델 (4.2/5.0 점 획득)이, 영어 음성 인식 모듈을 채택하여 표정 코딩 모듈을 종속적으로 학습시킨 모델 (2.7/5.0 점 획득)에 비해 결정적으로 더 자연스러운 한국어 스피치 애니메이션을 생성함을 보여 주었다. 이 결과는 한국어 스피치 애니메이션의 품질이 한국어 음성 인식의 정확성으로 귀결됨을 보여 줌으로써 상기의 효과를 확인해준다.