• Title/Summary/Keyword: 한국어 품사 태깅

Search Result 118, Processing Time 0.021 seconds

An HMM Part-of-Speech Tagger for Korean Based on Wordphrase (어절구조를 반영한 은닉 마르코프 모텔을 이용한 한국어 품사태깅)

  • Shin, Jung-Ho;Han, Young-Seok;Park, Young-Chan;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 1994.11a
    • /
    • pp.389-394
    • /
    • 1994
  • 말뭉치에 품사를 부여하는 일은 언어연구의 중요한 기초가 된다. 형태소 해석의 모호한 결과로부터 한 가지 품사를 선정하는 작업을 태깅이라고 한다. 한국어에서 은닉 마르코프 모델 (Hidden Markov Model)을 이용한 태깅은 형태소 관계만 흑은 어절관계만을 이용한 방법이 있어 왔다. 본 논문에서는 어절관계와 형태소관계를 동시에 은닉 마르코프 모델에 반영하여 태깅의 정확도를 높인 모델을 제시한다. 제안된 방법은 품사의 변별력은 뛰어나지만 은닉 마르코프 모델의 노드의 수가 커짐으로써 형태소만을 고려한 방법보다 더 많은 학습데이타를 필요로 한다. 실험적으로 본 논문의 방법이 기존의 방법보다 높은 정확성을 가지고 있음이 검증되었다.

  • PDF

An Efficient Korean Part-of-Speech Tagging (한국어에 적합한 효율적인 품사 태깅)

  • 김영훈
    • The Journal of the Korea Contents Association
    • /
    • v.2 no.2
    • /
    • pp.98-102
    • /
    • 2002
  • In this paper i offer a new part-of-speech tagging method for Korean, it can solve difficulty of statistical data acquisition and ambiguities due to same part-of-speech stream input and make good use of the Corpus. This method can solve that the corpus don't have huge. This method uses pattern information about part-of-speech among eojols and constraint-rules in order to perform part-of-speech tagging. The Constraint-rule is used to select appropriate part-of-speech pattern.

  • PDF

Chinese Segmentation and POS-Tagging by Automat ic POS Dictionary Training (품사 사전 자동 학습을 통한 중국어 단어 분할 및 품사 태깅)

  • Ha, Ju-Hong;Zheng, Yu;Lee, Gary G.
    • Annual Conference on Human and Language Technology
    • /
    • 2002.10e
    • /
    • pp.33-39
    • /
    • 2002
  • 중국어의 품사 태깅(part-of-speech tagging)을 위해서는 중국어 문장들은 내부 단어간의 명확한 분리가 없기 때문에 단어 분할(word segmentation)과 품사 태깅을 동시에 처리해야 한다. 본 논문은 규칙 기반(rule base)과 사전 기반(dictionary base) 기법을 혼합하여 구현한 단어 분할 시스템을 사용하여 입력 문장을 단어 단위로 분할하고, HMM(hidden Markov model) 기반 통계적 품사 태깅 기법을 사용한다. 특히, 본 논문에서는 주어진 말뭉치(corpus)로부터 자동 학습(automatic training)을 통해 품사 사전을 구축하여 구현된 시스템과 말뭉치간의 독립성을 유지한다. 말뭉치는 중국어 간체와 번체 모두를 대상으로 하고, 각 말뭉치로부터 자동 학습을 통해 얻어진 품사 사전으로 단어 분할과 품사 태깅을 한다. 실험결과들은 간체, 번체 각각의 단어 분할 성능과 품사 태깅 성능을 보여준다.

  • PDF

The Korean Part-of-speech Tagging Workbench for Tagged Corpus Construction (품사태그부착 코퍼스 구축을 위한 한국어 품사태깅 워크벤치)

  • Park, Young-C.;Kim, Nam-Il;Huh, Wook;Nam, Ki-Chun;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 1997.10a
    • /
    • pp.94-101
    • /
    • 1997
  • 한국어의 언어분석을 위한 가공코퍼스의 하나인 품사부착 코퍼스는 형태소 언어분석의 기초가 되는 자료로서 각종 언어분석 모델의 학습자료와 관측자료 또는 검증자료로서 중요한 역할을 한다. 품사부착 코퍼스의 구축은 많은 노력과 시간이 요구되는 어려운 작업이다. 기존의 구축방법은 자동 태거의 결과를 일일이 사람이 확인해 가면 오류를 발견하고 수정하는 단순 작업이었다. 이러한 단순 작업은 한번 수정된 자동태거의 반복적 오류, 미등록어에 의한 오류 들을 계속적으로 수정해야하는 비효율성을 내포하고 있었다. 본 논문에서는 HMM기반의 자동 태거를 사용하여 1차적으로 한국어 문서를 자동 태깅한다. 자동 태깅 결과로부터 규칙기반의 오류 수정을 추가적으로 행한다. 이렇게 구축된 결과를 사용자에게 제시하여 최종 오류를 수정하고 이를 앞으로의 태깅작업에 반영하는 품사부착 워크벤치에 대해 기술한다.

  • PDF

Development of POS Tagging System Independent to Word Spacing (띄어쓰기 비종속 품사 태깅 시스템 개발)

  • Lee, Kyung-Il;Ahn, Tae-Sung
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.69-72
    • /
    • 2003
  • 본 논문에서는 입력된 한국어 문자열로부터 형태소를 분석하고, 품사를 태깅하는 방법에 있어 개선된 통계적 모델을 제안하고, 이에 기반한 띄어쓰기 비종속 형태소 분석 및 태깅 시스템의 개발과 성능 평가에 대한 결과를 소개하고 있다. 제안된 통계 기반품사 태깅 시스템은 입력된 문자열로부터 음절의 띄어쓰기 확률값을 계산하여 유사어절을 생성하고, 유사어절 단위로 사용자 띄어쓰기와 상관없이 형태소 후보 리스트를 생성하며, 인접한 후보 형태소들의 접속 확률 계산에 있어 어절 간 접속 확률과 어절 내 접속 확률을 모두 사용함으로, 최적의 형태소 리스트를 결정하는 모델을 사용하고 있다. 특히, 형태소들의 접속 확률 계산 시 어절 간 접속 확률과 어절 내 접속 확률의 결합 비율이 음절의 띄어쓰기 확률 값과 사용자의 띄어쓰기 여부에 따라 자동으로 조절되는 특징을 가지고 있으며, 이를 통해 극단적으로 띄어 쓰거나 붙여 쓴 문장에 대해서도 평균 90%수준의 품사 태깅 성능을 달성할 수 있었다.

  • PDF

Syllable-based Korean POS Tagging Based on Combining a Pre-analyzed Dictionary with Machine Learning (기분석사전과 기계학습 방법을 결합한 음절 단위 한국어 품사 태깅)

  • Lee, Chung-Hee;Lim, Joon-Ho;Lim, Soojong;Kim, Hyun-Ki
    • Journal of KIISE
    • /
    • v.43 no.3
    • /
    • pp.362-369
    • /
    • 2016
  • This study is directed toward the design of a hybrid algorithm for syllable-based Korean POS tagging. Previous syllable-based works on Korean POS tagging have relied on a sequence labeling method and mostly used only a machine learning method. We present a new algorithm integrating a machine learning method and a pre-analyzed dictionary. We used a Sejong tagged corpus for training and evaluation. While the machine learning engine achieved eojeol precision of 0.964, the proposed hybrid engine achieved eojeol precision of 0.990. In a Quiz domain test, the machine learning engine and the proposed hybrid engine obtained 0.961 and 0.972, respectively. This result indicates our method to be effective for Korean POS tagging.

Improving Part-of-speech Tagging by using Resolution Information for Individual Ambiguous Word (어절별 중의성 해소 정보를 이용한 품사 태깅의 성능 향상)

  • Park, Hee-Geun;Seo, Young-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2007.10a
    • /
    • pp.134-139
    • /
    • 2007
  • 품사 태깅 시스템에서 규칙 정보와 통계 정보는 상호보완적으로 사용되어 품사 태깅의 성능을 향상시킨다. 하지만, 두 가지 정보로는 품사 태깅의 성능을 향상시키기에는 한계가 있다. 이에 본 논문에서는 어절별 중의성 해소 정보를 이용하여 품사 태깅 시스템의 정확률을 향상시키는 방법에 대해서 기술한다. 통계 정보는 21세기 세종계획의 천만 어절 균형 말뭉치와 태그 부착 말뭉치에서 추출한 trigram 형태의 중의성 어절 및 품사 태그열 출현 빈도 정보를 이용하여 구축하였고, 규칙 정보는 보조용언, 숙어, 관용적 표현 등을 이용하여 구축하였다. 어절별 중의성 해소 정보는 세종 천만 어절 균형 말뭉치의 중의성 어절에서 고빈도 상위 50%에 해당하는 어절을 대상으로 해당 어절의 의미정보와 문맥정보를 고려하여 구축되었고, 이것은 통계 정보를 이용한 품사 태깅 전에 적용되어 분석 후보를 줄여준다. 또한, 학습을 통하여 어절별 중의성 해소 정보를 수정 및 보강하여 잘못된 품사 태깅 결과를 보정해준다. 이와 같이 통계 정보와 규칙 정보를 이용한 품사 태깅 시스템에 고빈도 중의성 어절에 대한 어절별 중의성 해소 정보를 이용함으로써 품사 태깅의 성능을 향상시킬 수 있었다.

  • PDF

Korean Part-of-Speech Tagging using Automatically Acquired Lexical Information (어휘 정보의 자동 추출과 이를 이용한 한국어 품사 태깅)

  • Kang, In-Ho;Kim, Do-Wan;Lee, Sin-Mok;Kim, Gil-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10d
    • /
    • pp.117-122
    • /
    • 1999
  • 본 연구는 형태소 분석에 필요한 언어 지식과 품사 태깅에 필요한 확률 정보를 별도의 언어 지식 추가 없이 학습 말뭉치를 통해서 얻어내는 방법을 제안한다. 먼저 품사 부착된 학습 말뭉치로부터 형태소 사전과 결합 정보를 추출한다. 그리고 자주 발생하는 어절 및 해석상 모호성이 많은 어절에 대해서는 학습 말뭉치에서 발견된 형태소 분석 결과를 저장하여 형태소 분석에 소요되는 시간과 형태소 분석의 정확률을 높인다. 또한 미등록어의 많은 부분을 차지하는 인명, 지명, 조직명에 대해서는 정보 추출 분야에서 사용하는 고유 명사 분류법으로 해결한다. 품사 태깅을 위해서는 품사열 정보와 품사열 정보로는 해결할 수 없는 경우를 위한 어휘 정보를 학습 말뭉치에서 추출한다. 품사열 정보와 어휘 정보는 정형화 과정을 거쳐 최대 엔트로피 모델의 자질로 사용되어 품사 태깅 시스템을 위한 확률 분포를 구성한다. 본 연구에서 제안하는 방법은 학습 말뭉치를 기반으로 한다는 특성에 의해 다양한 영역에 사용하기 쉽다. 또한 어휘 정보로 품사 문맥 정보를 보완하기 때문에 품사 분류 체계와 형태소 해석 규칙에 영향을 적게 받는다는 장점을 가진다. MATEC '99 데이터 실험 결과 형태소 단위로 94%의 재현률과 93%의 정확률을 얻을 수 있었다.

  • PDF

A Transition based Joint Model for Korean POS Tagging & Dependency Parsing using Deep Learning (딥러닝을 이용한 전이 기반 한국어 품사 태깅 & 의존 파싱 통합 모델)

  • Min, Jin-Woo;Na, Seung-Hoon;Sin, Jong-Hoon
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.97-102
    • /
    • 2017
  • 형태소 분석과 의존 파싱은 자연어 처리 분야에서 핵심적인 역할을 수행하고 있다. 이러한 핵심적인 역할을 수행하는 형태소 분석과 의존 파싱에 대해 일괄적으로 학습하는 통합 모델에 대한 필요성이 대두 되었고 이에 대한 많은 연구들이 수행되었다. 기존의 형태소 분석 & 의존 파싱 통합 모델은 먼저 형태소 분석 및 품사 태깅에 대한 학습을 수행한 후 이어서 의존 파싱 모델을 학습하는 파이프라인 방식으로 진행되었다. 이러한 방식의 학습을 두 번 연이어 진행하기 때문에 시간이 오래 걸리고 또한 형태소 분석과 파싱이 서로 영향을 주지 못하는 단점이 존재하였다. 본 논문에서는 의존 파싱에서 형태소 분석에 대한 전이 액션을 포함하도록 전이 액션을 확장하여 한국어 형태소 분석 & 의존파싱에 대한 통합모델을 제안하였고 성능 측정 결과 세종 형태소 분석 데이터 셋에서 F1 97.63%, SPMRL '14 한국어 의존 파싱 데이터 셋에서 UAS 90.48%, LAS 88.87%의 성능을 보여주어 기존의 의존 파싱 성능을 더욱 향상시켰다.

  • PDF

Lattice-based discriminative approach for Korean morphological analysis and POS tagging (래티스상의 구조적 분류에 기반한 한국어 형태소 분석 및 품사 태깅)

  • Na, Seung-Hoon;Kim, Chang-Hyun;Kim, Young-Kil
    • Annual Conference on Human and Language Technology
    • /
    • 2013.10a
    • /
    • pp.3-8
    • /
    • 2013
  • 본 논문에서는 래티스상의 구조적 분류에 기반한 한국어 형태소 분석 및 품사 태깅을 수행하는 방법을 제안한다. 제안하는 방법은 입력문이 주어질 때 어휘 사전을 참조하여, 형태소를 노드로 취하고 인접형태 소간의 에지를 갖도록 래티스를 구성하며, 구성된 래티스상 가장 점수가 높은 경로상에 있는 형태소들을 분석 결과로 제시하는 방법이다. 실험 결과, ETRI 품사 부착 코퍼스에서 기존의 1차 linear-chain CRF에 기반한 방법보다 높은 어절 정확률 그리고 문장 정확률을 얻었다.

  • PDF