• Title/Summary/Keyword: 한국어 자동 띄어쓰기

Search Result 40, Processing Time 0.029 seconds

Overview of Automatic Spacing and Compound Noun Decomposition: 2018 Korean Natural Language Processing Contest (자동띄어쓰기 오류 수정 및 복합명사 분해 개요: 2018 차세정 언어처리 경진대회)

  • Choi, Jin-Hyuk;Ryu, Pum-Mo;Oh, Hyo-Jung
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.193-196
    • /
    • 2018
  • 차세대정보컴퓨팅 개발사업 협의회에서 주최하고 한국어 정보처리 원천기술 연구개발 사업단에서 주관하는 2018 차세정 언어처리 경진대회가 개최되었다. "한국어 자동 띄어쓰기"와 "한국어 복합명사 분해"의 두 태스크로 진행되었고 각각 4팀, 2팀이 참가하였다. 주최 측에서 제공한 데이터만을 활용하는 closed 트랙과 각 참가팀이 추가 데이터를 활용하는 open 트랙으로 구분하여 평가하였다.

  • PDF

Automatic English MeSH keywords assignment to Korean medical documents - spacing variant effect (한국어 의학 문서에 대한 영문 MeSH 키워드의 자동 부여 - 띄어쓰기 변이 처리 효과를 중심으로)

  • Lee, Jae-Sung;Kim, Mi-Suk;Lee, Young-Sung
    • Annual Conference on Human and Language Technology
    • /
    • 2004.10d
    • /
    • pp.82-89
    • /
    • 2004
  • 본 논문에서는 한국어 의학 논문의 요약문으로부터 자동 영문 MeSH 키워드 제안 시스템을 소개하고, 띄어쓰기 변이(spacing variant) 문제를 해결할 수 있는 방법을 제안한다. 띄어쓰기 변이란 표준 한글 맞춤법에 비해 다르게 띄어쓰기된 것을 말한다. 이를 위해 시소러스에는 생성 가능한 모든 띄어쓰기 변이 대신에 최대 띄어쓰기 어구만을 저장하고, 문서에서 K-MeSH 용어를 찾기 위해 음절단위 부분문자열 검색을 사용한다. 이 방법으로 한국어 의학 논문의 요약문에서 K-MeSH 용어를 추출한 후, TF-IDF 순위 함수를 이용하여 상위 10위내의 키워드를 저자가 선정한 영문 키워드와 비교한 결과 58%가 일치하였다. 이는 기존 방법에 비해 42%정도의 시소러스 크기가 축소되었고, 상위 10위내에서 영문 MeSH 키워드 추천 재현률이 약 7.8% 증가한 것으로 효과적인 방법임을 보여주었다.

  • PDF

Improving Korean Word-Spacing System Using Stochastic Information (통계 정보를 이용한 한국어 자동 띄어쓰기 시스템의 성능 개선)

  • 최성자;강미영;권혁철
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.883-885
    • /
    • 2004
  • 본 논문은 대용량 말뭉치로부터 어절 unigram과 음절 bigram 통계 정보를 추출하여 구축한 한국어 자동 띄어쓰기 시스템의 성능을 개선하는 방법을 제안한다 어절 통계를 주로 이용하는 기법으로 한국어 문서를 처리할 때, 한국어의 교착어적인 특성으로 인해 자료부족 문제가 발생한다 이물 극복하기 위해서 본 논문은 음절 bigram간 띄어쓸 확률 정보를 이용함으로써 어절로 인식 가능한 추가의 후보 어절을 추정하는 방법을 제안한다. 이와 글이 개선된 시스템의 성능을 다양한 실험 데이터를 사용하여 평가한 결과, 평균 93.76%의 어절 단위 정확도를 얻었다.

  • PDF

A Recognition of Word Spacing Errors Using By Syllable Bigram (음절 bigram 특성을 이용한 띄어쓰기 오류의 인식)

  • Kang, Seung-Shik
    • Annual Conference on Human and Language Technology
    • /
    • 2000.10d
    • /
    • pp.85-88
    • /
    • 2000
  • 대용량 말뭉치에서 이웃 음절간 공기빈도 정보를 추출하여 한글의 bigram 음절 특성을 조사하였다. Bigram 음절 특성은 띄어쓰기가 무시된 문서에 대한 자동 띄어쓰기, 어떤 어절이 띄어쓰기 오류어인지 판단, 맞춤법 검사기에서 철자 오류어의 교정 등 다양한 응용분야에서 유용하게 사용될 것으로 예상되고 있다. 본 논문에서는 한글의 bigram 음절 특성을 자동 띄어쓰기 및 입력어절이 띄어쓰기 오류어인지를 판단하는데 적용하는 실험을 하였다. 실험 결과에 의하면 bigram 음절 특성이 매우 유용하게 사용될 수 있음을 확인하였다.

  • PDF

Self-Organizing n-gram Model for Automatic Word Spacing (자기 조직화 n-gram모델을 이용한 자동 띄어쓰기)

  • Tae, Yoon-Shik;Park, Seong-Bae;Lee, Sang-Jo;Park, Se-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2006.10e
    • /
    • pp.125-132
    • /
    • 2006
  • 한국어의 자연어처리 및 정보검색분야에서 자동 띄어쓰기는 매우 중요한 문제이다. 신문기사에서조차 잘못된 띄어쓰기를 발견할 수 있을 정도로 띄어쓰기가 어려운 경우가 많다. 본 논문에서는 자기 조직화 n-gram모델을 이용해 자동 띄어쓰기의 정확도를 높이는 방법을 제안한다. 본 논문에서 제안하는 방법은 문맥의 길이를 바꿀 수 있는 가변길이 n-gram모델을 기본으로 하여 모델이 자동으로 문맥의 길이를 결정하도록 한 것으로, 일반적인 n-gram모델에 비해 더욱 높은 성능을 얻을 수 있다. 자기조직화 n-gram모델은 최적의 문맥의 길이를 찾기 위해 문맥의 길이를 늘였을 때 나타나는 확률분포와 문맥의 길이를 늘이지 않았을 태의 확률분포를 비교하여 그 차이가 크다면 문맥의 길이를 늘이고, 그렇지 않다면 문맥의 길이를 자동으로 줄인다. 즉, 더 많은 정보가 필요한 경우는 데이터의 차원을 높여 정확도를 올리며, 이로 인해 증가된 계산량은 필요 없는 데이터의 양을 줄임으로써 줄일 수 있다. 본 논문에서는 실험을 통해 n-gram모델의 자기 조직화 구조가 기본적인 모델보다 성능이 뛰어나다는 것을 확인하였다.

  • PDF

Concept and Application of Deep learning-based Automatic Spacing (문장 정보를 고려한 딥 러닝 기반 자동 띄어쓰기의 개념 및 활용)

  • Cho, Won Ik;Cheon, Sung Jun;Kim, Ji Won;Kim, Nam Soo
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.181-184
    • /
    • 2018
  • 본 논문에서는, 한국어 활용에 있어 중의성을 해소해 주고 심미적 효과를 줄 수 있는 개념인 띄어쓰기를, 교정이 아닌 입력 보조의 관점에서 접근한다. 사람들에게 자판을 통한 텍스트 입력이 언어활동의 보편적인 수단이 되면서 가독성을 포기하고서라도 편의를 택하는 경우가 증가하게 되었는데, 본 연구에서는 그러한 문장들의 전달력을 높여 줄 수 있는 자동 띄어쓰기 및 그 활용 방안을 제시한다. 전체 시스템은 dense word embedding과 딥 러닝 아키텍쳐를 활용하여 훈련되었으며, 사용된 코퍼스는 비표준어 및 비정형을 포함하는 대화체 문장으로 구성되어 user-generate된 대화형 문장 입력의 처리에 적합하다.

  • PDF

Automatic Korean to English Cross Language Keyword Assignment Using MeSH Thesaurus (MeSH 시소러스를 이용한 한영 교차언어 키워드 자동 부여)

  • Lee Jae-Sung;Kim Mi-Suk;Oh Yong-Soon;Lee Young-Sung
    • The KIPS Transactions:PartB
    • /
    • v.13B no.2 s.105
    • /
    • pp.155-162
    • /
    • 2006
  • The medical thesaurus, MeSH (Medical Subject Heading), has been used as a controlled vocabulary thesaurus for English medical paper indexing for a long time. In this paper, we propose an automatic cross language keyword assignment method, which assigns English MeSH index terms to the abstract of a Korean medical paper. We compare the performance with the indexing performance of human indexers and the authors. The procedure of index term assignment is that first extracting Korean MeSH terms from text, changing these terms into the corresponding English MeSH terms, and calculating the importance of the terms to find the highest rank terms as the keywords. For the process, an effective method to solve spacing variants problem is proposed. Experiment showed that the method solved the spacing variant problem and reduced the thesaurus space by about 42%. And the experiment also showed that the performance of automatic keyword assignment is much less than that of human indexers but is as good as that of authors.

CRFs versus Bi-LSTM/CRFs: Automatic Word Spacing Perspective (CRFs와 Bi-LSTM/CRFs의 비교 분석: 자동 띄어쓰기 관점에서)

  • Yoon, Ho;Kim, Chang-Hyun;Cheon, Min-Ah;Park, Ho-min;Namgoong, Young;Choi, Minseok;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.189-192
    • /
    • 2018
  • 자동 띄어쓰기란 컴퓨터를 사용하여 띄어쓰기가 수행되어 있지 않은 문장에 대해 띄어쓰기를 수행하는 것이다. 이는 자연언어처리 분야에서 형태소 분석 전에 수행되는 과정으로, 띄어쓰기에 오류가 발생할 경우, 형태소 분석이나 구문 분석 등에 영향을 주어 그 결과의 모호성을 높이기 때문에 매우 중요한 전처리 과정 중 하나이다. 본 논문에서는 기계학습의 방법 중 하나인 CRFs(Conditional Random Fields)를 이용하여 자동 띄어쓰기를 수행하고 심층 학습의 방법 중 하나인 양방향 LSTM/CRFs (Bidirectional Long Short Term Memory/CRFs)를 이용하여 자동 띄어쓰기를 수행한 뒤 각 모델의 성능을 비교하고 분석한다. CRFs 모델이 양방향 LSTM/CRFs모델보다 성능이 약간 더 높은 모습을 보였다. 따라서 소형 기기와 같은 환경에서는 CRF와 같은 모델을 적용하여 모델의 경량화 및 시간복잡도를 개선하는 것이 훨씬 더 효과적인 것으로 생각된다.

  • PDF

Development of POS Tagging System Independent to Word Spacing (띄어쓰기 비종속 품사 태깅 시스템 개발)

  • Lee, Kyung-Il;Ahn, Tae-Sung
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.69-72
    • /
    • 2003
  • 본 논문에서는 입력된 한국어 문자열로부터 형태소를 분석하고, 품사를 태깅하는 방법에 있어 개선된 통계적 모델을 제안하고, 이에 기반한 띄어쓰기 비종속 형태소 분석 및 태깅 시스템의 개발과 성능 평가에 대한 결과를 소개하고 있다. 제안된 통계 기반품사 태깅 시스템은 입력된 문자열로부터 음절의 띄어쓰기 확률값을 계산하여 유사어절을 생성하고, 유사어절 단위로 사용자 띄어쓰기와 상관없이 형태소 후보 리스트를 생성하며, 인접한 후보 형태소들의 접속 확률 계산에 있어 어절 간 접속 확률과 어절 내 접속 확률을 모두 사용함으로, 최적의 형태소 리스트를 결정하는 모델을 사용하고 있다. 특히, 형태소들의 접속 확률 계산 시 어절 간 접속 확률과 어절 내 접속 확률의 결합 비율이 음절의 띄어쓰기 확률 값과 사용자의 띄어쓰기 여부에 따라 자동으로 조절되는 특징을 가지고 있으며, 이를 통해 극단적으로 띄어 쓰거나 붙여 쓴 문장에 대해서도 평균 90%수준의 품사 태깅 성능을 달성할 수 있었다.

  • PDF

A Stochastic Word-Spacing System Based on Word Category-Pattern (어절 내의 형태소 범주 패턴에 기반한 통계적 자동 띄어쓰기 시스템)

  • Kang, Mi-Young;Jung, Sung-Won;Kwon, Hyuk-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.11
    • /
    • pp.965-978
    • /
    • 2006
  • This paper implements an automatic Korean word-spacing system based on word-recognition using morpheme unigrams and the pattern that the categories of those morpheme unigrams share within a candidate word. Although previous work on Korean word-spacing models has produced the advantages of easy construction and time efficiency, there still remain problems, such as data sparseness and critical memory size, which arise from the morpho-typological characteristics of Korean. In order to cope with both problems, our implementation uses the stochastic information of morpheme unigrams, and their category patterns, instead of word unigrams. A word's probability in a sentence is obtained based on morpheme probability and the weight for the morpheme's category within the category pattern of the candidate word. The category weights are trained so as to minimize the error means between the observed probabilities of words and those estimated by words' individual-morphemes' probabilities weighted according to their categories' powers in a given word's category pattern.