• Title/Summary/Keyword: 한국어 언어 모델

Search Result 1,039, Processing Time 0.022 seconds

Llama2 Cross-lingual Korean with instruction and translation datasets (지시문 및 번역 데이터셋을 활용한 Llama2 Cross-lingual 한국어 확장)

  • Gyu-sik Jang;;Seung-Hoon Na;Joon-Ho Lim;Tae-Hyeong Kim;Hwi-Jung Ryu;Du-Seong Chang
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.627-632
    • /
    • 2023
  • 대규모 언어 모델은 높은 연산 능력과 방대한 양의 데이터를 기반으로 탁월한 성능을 보이며 자연어처리 분야의 주목을 받고있다. 이러한 모델들은 다양한 언어와 도메인의 텍스트를 처리하는 능력을 갖추게 되었지만, 전체 학습 데이터 중에서 한국어 데이터의 비중은 여전히 미미하다. 결과적으로 이는 대규모 언어 모델이 영어와 같은 주요 언어들에 비해 한국어에 대한 이해와 처리 능력이 상대적으로 부족함을 의미한다. 본 논문은 이러한 문제점을 중심으로, 대규모 언어 모델의 한국어 처리 능력을 향상시키는 방법을 제안한다. 특히, Cross-lingual transfer learning 기법을 활용하여 모델이 다양한 언어에 대한 지식을 한국어로 전이시켜 성능을 향상시키는 방안을 탐구하였다. 이를 통해 모델은 기존의 다양한 언어에 대한 손실을 최소화 하면서도 한국어에 대한 처리 능력을 상당히 향상시켰다. 실험 결과, 해당 기법을 적용한 모델은 기존 모델 대비 nsmc데이터에서 2배 이상의 성능 향상을 보이며, 특히 복잡한 한국어 구조와 문맥 이해에서 큰 발전을 보였다. 이러한 연구는 대규모 언어 모델을 활용한 한국어 적용 향상에 기여할 것으로 기대 된다.

  • PDF

Properties and Quantitative Analysis of Bias in Korean Language Models: A Comparison with English Language Models and Improvement Suggestions (한국어 언어모델의 속성 및 정량적 편향 분석: 영어 언어모델과의 비교 및 개선 제안)

  • Jaemin Kim;Dong-Kyu Chae
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.558-562
    • /
    • 2023
  • 최근 ChatGPT의 등장으로 텍스트 생성 모델에 대한 관심이 높아지면서, 텍스트 생성 태스크의 성능평가를 위한 지표에 대한 연구가 활발히 이뤄지고 있다. 전통적인 단어 빈도수 기반의 성능 지표는 의미적인 유사도를 고려하지 못하기 때문에, 사전학습 언어모델을 활용한 지표인 BERTScore를 주로 활용해왔다. 하지만 이러한 방법은 사전학습 언어모델이 학습한 데이터에 존재하는 편향으로 인해 공정성에 대한 문제가 우려된다. 이에 따라 한국어 사전학습 언어모델의 편향에 대한 분석 연구가 필요한데, 기존의 한국어 사전학습 언어모델의 편향 분석 연구들은 사회에서 생성되는 다양한 속성 별 편향을 고려하지 못했다는 한계가 있다. 또한 서로 다른 언어를 기반으로 하는 사전학습 언어모델들의 속성 별 편향을 비교 분석하는 연구 또한 미비하였다. 이에 따라 본 논문에서는 한국어 사전학습 언어모델의 속성 별 편향을 비교 분석하며, 영어 사전학습 언어모델이 갖고 있는 속성 별 편향과 비교 분석하였고, 비교 가능한 데이터셋을 구축하였다. 더불어 한국어 사전학습 언어모델의 종류 및 크기 별 편향 분석을 통해 적합한 모델을 선택할 수 있도록 가이드를 제시한다.

  • PDF

Korean language model construction and comparative analysis with Cross-lingual Post-Training (XPT) (Cross-lingual Post-Training (XPT)을 통한 한국어 언어모델 구축 및 비교 실험)

  • Suhyune Son;Chanjun Park ;Jungseob Lee;Midan Shim;Sunghyun Lee;JinWoo Lee ;Aram So;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.295-299
    • /
    • 2022
  • 자원이 부족한 언어 환경에서 사전학습 언어모델 학습을 위한 대용량의 코퍼스를 구축하는데는 한계가 존재한다. 본 논문은 이러한 한계를 극복할 수 있는 Cross-lingual Post-Training (XPT) 방법론을 적용하여 비교적 자원이 부족한 한국어에서 해당 방법론의 효율성을 분석한다. 적은 양의 한국어 코퍼스인 400K와 4M만을 사용하여 다양한 한국어 사전학습 모델 (KLUE-BERT, KLUE-RoBERTa, Albert-kor)과 mBERT와 전반적인 성능 비교 및 분석 연구를 진행한다. 한국어의 대표적인 벤치마크 데이터셋인 KLUE 벤치마크를 사용하여 한국어 하위태스크에 대한 성능평가를 진행하며, 총 7가지의 태스크 중에서 5가지의 태스크에서 XPT-4M 모델이 기존 한국어 언어모델과의 비교에서 가장 우수한 혹은 두번째로 우수한 성능을 보인다. 이를 통해 XPT가 훨씬 더 많은 데이터로 훈련된 한국어 언어모델과 유사한 성능을 보일 뿐 아니라 학습과정이 매우 효율적임을 보인다.

  • PDF

Construction of bilingually pre-trained language model from large-scaled Korean and English corpus (KE-T5: 한국어-영어 대용량 텍스트를 활용한 이중언어 사전학습기반 대형 언어모델 구축)

  • Shin, Saim;Kim, San;Seo, Hyeon-Tae
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.419-422
    • /
    • 2021
  • 본 논문은 한국어와 영어 코퍼스 93GB를 활용하여 구축한 대형 사전학습기반 언어모델인 KE-T5를 소개한다. KE-T5는 한국어와 영어 어휘 64,000개를 포함하는 대규모의 언어모델로 다양한 한국어처리와 한국어와 영어를 모두 포함하는 번역 등의 복합언어 태스크에서도 높은 성능을 기대할 수 있다. KE-T5의 활용은 대규모의 언어모델을 기반으로 영어 수준의 복잡한 언어처리 태스크에 대한 연구들을 본격적으로 시작할 수 있는 기반을 마련하였다.

  • PDF

Korean ELECTRA for Natural Language Processing Downstream Tasks (한국어 ELECTRA 모델을 이용한 자연어처리 다운스트림 태스크)

  • Whang, Taesun;Kim, Jungwook;Lee, Saebyeok
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.257-260
    • /
    • 2020
  • 사전 학습을 기반으로 하는 BERT계열의 모델들이 다양한 언어 및 자연어 처리 태스크들에서 뛰어난 성능을 보이고 있지만, masked language model의 경우 입력 문장의 15%만 마스킹을 함으로써 학습 효율이 떨어지고 미세 조정 시 마스킹 토큰이 등장하지 않는 불일치 문제도 존재한다. 이러한 문제를 효과적으로 해결한 ELECTRA는 영어 벤치마크에서 기존의 언어모델들 보다 뛰어난 성능을 보여주었지만 한국어에 대한 관련 연구는 부족한 실정이다. 본 연구에서는 ELECTRA를 한국어 코퍼스에 대해 학습시키고, 다양한 한국어 자연어 이해 태스크들에 대해 실험을 진행한다. 실험을 통해 ELECTRA의 모델 크기별 성능 평가를 진행하였고, 여러 한국어 태스크들에 대해서 평가함으로써 ELECTRA 모델이 기존의 언어 모델들보다 좋은 성능을 보인다는 것을 입증하였다.

  • PDF

Korean Commonsense Reasoning Evaluation for Large Language Models (거대언어모델을 위한 한국어 상식추론 기반 평가)

  • Jaehyung Seo;Chanjun Park;Hyeonseok Moon;Sugyeong Eo;Aram So;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.162-167
    • /
    • 2023
  • 본 논문은 거대언어모델에 대한 한국어 상식추론 기반의 새로운 평가 방식을 제안한다. 제안하는 평가 방식은 한국어의 일반 상식을 기초로 삼으며, 이는 거대언어모델이 주어진 정보를 얼마나 잘 이해하고, 그에 부합하는 결과물을 생성할 수 있는지를 판단하기 위함이다. 기존의 한국어 상식추론 능력 평가로 사용하던 Korean-CommonGEN에서 언어 모델은 이미 높은 수준의 성능을 보이며, GPT-3와 같은 거대언어모델은 사람의 상한선을 넘어선 성능을 기록한다. 따라서, 기존의 평가 방식으로는 거대언어모델의 발전된 상식추론 능력을 정교하게 평가하기 어렵다. 더 나아가, 상식 추론 능력을 평가하는 과정에서 사회적 편견이나 환각 현상을 충분히 고려하지 못하고 있다. 본 연구의 평가 방법은 거대언어모델이 야기하는 문제점을 반영하여, 다가오는 거대언어모델 시대에 한국어 자연어 처리 연구가 지속적으로 발전할 수 있도록 하는 상식추론 벤치마크 구성 방식을 새롭게 제시한다.

  • PDF

Examining the Feasibility of Utilizing a Large Language Model for Korean Grammatical Error Correction (한국어 맞춤법 교정을 위한 초거대 언어 모델의 잠재적 능력 탐색)

  • Seonmin Koo;Chanjun Park;JeongBae Park;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.61-65
    • /
    • 2023
  • 최근, 대부분의 태스크가 초거대 언어 모델로 통합되고 있을 정도로 많은 관심 및 연구되고 있다. 초거대 언어 모델을 효과적으로 활용하기 위해서는 모델의 능력에 대한 분석이 선행되어야 하나, 한국어에 대한 분석 및 탐색은 상대적으로 부족하다. 본 논문에서는 한국어 맞춤법 교정 태스크를 통해 초거대 언어 모델의 능력을 탐색한다. 맞춤법 교정 태스크는 문장의 구조 및 문법을 이해하는 능력이 필요하며, 사용자의 만족도에 영향을 미칠 수 있는 중요한 태스크이다. 우리는 맞춤법 세부 유형에 따른 ChatGPT의 제로샷 및 퓨샷성능을 평가하여 초거대 언어 모델의 성능 분석을 수행한다. 실험 결과 제로샷의 경우 문장부호 오류의 성능이 가장 우수했으며, 수사 오류의 성능이 가장 낮았다. 또한, 예제를 더 많이 제공할수록 전체적인 모델의 성능이 향상되었으나, 제로샷의 경우보다 오류 유형 간의 성능 차이가 커지는 것을 관찰할 수 있었다.

  • PDF

Calibration of Pre-trained Language Model for Korean (사전 학습된 한국어 언어 모델의 보정)

  • Jeong, Soyeong;Yang, Wonsuk;Park, ChaeHun;Park, Jong C.
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.243-248
    • /
    • 2020
  • 인공 신경망을 통한 심층 학습 모델의 발전은 컴퓨터 비전, 자연언어 이해 문제들에서 인간을 뛰어넘는 성능을 보이고 있다. 특히 트랜스포머[1] 기반의 사전 학습 모델은 질의응답, 대화문과 같은 자연언어 이해 문제에서 최근 높은 성능을 보이고 있다. 하지만 트랜스포머 기반의 모델과 같은 심층 학습 모델의 급격한 발전 양상에 비해, 이의 동작 방식은 상대적으로 잘 알려져 있지 않다. 인공 신경망을 통한 심층 학습 모델을 해석하는 방법으로 모델의 예측 값과 실제 값이 얼마나 일치하는지를 측정하는 모델의 보정(Calibration)이 있다. 본 연구는 한국어 기반의 심층학습 모델의 해석을 위해 모델의 보정을 수행하였다. 그리고 사전 학습된 한국어 언어 모델이 문장이 내포하는 애매성을 잘 파악하는지의 여부를 확인하고, 완화 기법들을 적용하여 문장의 애매성을 확신 수준을 통해 정량적으로 출력할 수 있도록 하였다. 또한 한국어의 문법적 특징으로 인한 문장의 의미 변화를 모델 보정 관점에서 평가하여 한국어의 문법적 특징을 심층학습 언어 모델이 잘 이해하고 있는지를 정량적으로 확인하였다.

  • PDF

Language Specific CTC Projection Layers on Wav2Vec2.0 for Multilingual ASR (다국어 음성인식을 위한 언어별 출력 계층 구조 Wav2Vec2.0)

  • Lee, Won-Jun;Lee, Geun-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.414-418
    • /
    • 2021
  • 다국어 음성인식은 단일언어 음성인식에 비해 높은 난이도를 보인다. 하나의 단일 모델로 다국어 음성인식을 수행하기 위해선 다양한 언어가 공유하는 음성적 특성을 모델이 학습할 수 있도록 하여 음성인식 성능을 향상시킬 수 있다. 본 연구는 딥러닝 음성인식 모델인 Wav2Vec2.0 구조를 변경하여 한국어와 영어 음성을 하나의 모델로 학습하는 방법을 제시한다. CTC(Connectionist Temporal Classification) 손실함수를 이용하는 Wav2Vec2.0 모델의 구조에서 각 언어마다 별도의 CTC 출력 계층을 두고 각 언어별 사전(Lexicon)을 적용하여 음성 입력을 다른 언어로 혼동되는 경우를 원천적으로 방지한다. 제시한 Wav2Vec2.0 구조를 사용하여 한국어와 영어를 잘못 분류하여 음성인식률이 낮아지는 문제를 해결하고 더불어 제시된 한국어 음성 데이터셋(KsponSpeech)에서 한국어와 영어를 동시에 학습한 모델이 한국어만을 이용한 모델보다 향상된 음성 인식률을 보임을 확인하였다. 마지막으로 Prefix 디코딩을 활용하여 언어모델을 이용한 음성인식 성능 개선을 수행하였다.

  • PDF

KcBERT: Korean comments BERT (KcBERT: 한국어 댓글로 학습한 BERT)

  • Lee, Junbum
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.437-440
    • /
    • 2020
  • 최근 자연어 처리에서는 사전 학습과 전이 학습을 통하여 다양한 과제에 높은 성능 향상을 성취하고 있다. 사전 학습의 대표적 모델로 구글의 BERT가 있으며, 구글에서 제공한 다국어 모델을 포함해 한국의 여러 연구기관과 기업에서 한국어 데이터셋으로 학습한 BERT 모델을 제공하고 있다. 하지만 이런 BERT 모델들은 사전 학습에 사용한 말뭉치의 특성에 따라 이후 전이 학습에서의 성능 차이가 발생한다. 본 연구에서는 소셜미디어에서 나타나는 구어체와 신조어, 특수문자, 이모지 등 일반 사용자들의 문장에 보다 유연하게 대응할 수 있는 한국어 뉴스 댓글 데이터를 통해 학습한 KcBERT를 소개한다. 본 모델은 최소한의 데이터 정제 이후 BERT WordPiece 토크나이저를 학습하고, BERT Base 모델과 BERT Large 모델을 모두 학습하였다. 또한, 학습된 모델을 HuggingFace Model Hub에 공개하였다. KcBERT를 기반으로 전이 학습을 통해 한국어 데이터셋에 적용한 성능을 비교한 결과, 한국어 영화 리뷰 코퍼스(NSMC)에서 최고 성능의 스코어를 얻을 수 있었으며, 여타 데이터셋에서는 기존 한국어 BERT 모델과 비슷한 수준의 성능을 보였다.

  • PDF