• Title/Summary/Keyword: 한국어 어휘 말뭉치

Search Result 104, Processing Time 0.021 seconds

Performance Improvement of Chunking Using Cascaded Machine Learning Methods (다단계 기계학습 기법을 이용한 구묶음 성능향상)

  • Jeon, Kil-Ho;Seo, Hyeong-Won;Choi, Myung-Gil;Nam, Yoo-Rim;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2011.10a
    • /
    • pp.107-109
    • /
    • 2011
  • 기계학습은 학습말뭉치로부터 문제를 해결하기 위한 규칙을 학습하여 모델을 생성한다. 생성된 모델의 성능을 높이기 위해서는 문제에 적합한 자질들을 많이 이용해야 하지만 많은 자질들을 사용하면 모델의 생성시간은 느려지는 것이 사실이다. 이 문제를 해결하기 위해 본 논문에서는 다단계 기법을 적용한 기계학습으로 구묶음 시스템을 제작하여 학습모델의 생성시간을 단축하고 성능을 높이는 기법을 제안한다. 많은 종류의 자질들을 두 단계로 분리하여 학습하는 기법으로 1단계에서 구의 경계를 인식하고 2단계에서 구의태그를 결정한다. 1단계의 학습자질은 어휘 정보, 품사 정보, 띄어쓰기 정보, 중심어 정보를 사용하였으며, 2단계 학습자질은 어휘 정보와 품사 정보 외에 1단계 결과에서 추출한 구의 시작 품사 정보와 끝 품사 정보, 구 정보, 구 품사 정보를 자질로 사용하였다. 평가를 위해서 본 논문에서는 ETRI 구문구조 말뭉치를 사용하였다.

  • PDF

Performance Improvement of Bilingual Lexicon Extraction via Pivot Language and Word Alignment Tool (중간언어와 단어정렬을 통한 이중언어 사전의 자동 추출에 대한 성능 개선)

  • Kwon, Hong-Seok;Seo, Hyeung-Won;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2013.10a
    • /
    • pp.27-32
    • /
    • 2013
  • 본 논문은 잘 알려지지 않은 언어 쌍에 대해서 병렬말뭉치(parallel corpus)로부터 자동으로 이중언어 사전을 추출하는 방법을 제안하였다. 이 방법은 중간언어(pivot language)를 매개로 하고 문맥 벡터를 생성하기 위해 공개된 단어 정렬 도구인 Anymalign을 사용하였다. 그 결과로 초기사전(seed dictionary)을 사용한 문맥벡터의 번역 과정이 필요 없으며 통계적 방법의 약점인 낮은 빈도수를 가지는 어휘에 대한 번역 정확도를 높였다. 또한 문맥벡터의 요소 값으로 특정 임계값 이상을 가지는 양방향 번역 확률 정보를 사용하여 상위 5위 이내의 번역 정확도를 크게 높였다. 본 논문은 두 개의 서로 다른 언어 쌍 한국어-스페인어 그리고 한국어-프랑스어 양방향에 대해서 각각 이중언어 사전을 추출하는 실험을 하였다. 높은 빈도수를 가지는 어휘에 대한 번역 정확도는 이전 연구에서 보인 실험 결과에 비해 최소 3.41% 최대 67.91%의 성능 향상을 보였고 낮은 빈도수를 가지는 어휘에 대한 번역 정확도는 최소 5.06%, 최대 990%의 성능 향상을 보였다.

  • PDF

Synonym Emotional Adjectives in Coordination: Analyzing [Emotional Adjective + '-ko(and)'] + Emotional Adjective] Structures in Korean (감정형용사 유의어 결합 연구 -[[감정형용사 + '-고'] + 감정형용사] 구성-)

  • Park, JINA;Jeong, Yong-Ho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.565-577
    • /
    • 2024
  • This discussion looked at how emotional adjectives are connected in the format [[emotional adjective + '-ko(and)'] + emotional adjective]. As a result, it was confirmed that there are quite a few cases in which two or more emotional adjectives are used to express emotions in Korean. This can help Korean learners understand and express the individual lexical meanings of emotional adjectives more clearly by identifying emotional adjectives that are used together with the corresponding configuration. It was believed that it could help Korean language learners express complex emotions or create rich emotional expressions when expressing their emotions in Korean. It is hoped that the examples and frequency of [[emotional adjective+'-ko(and)'+emotional adjective] shown in this discussion will be of some help in teaching and learning Korean emotional vocabulary.

A Korean Language Stemmer based on Unsupervised Learning (자율 학습에 의한 실질 형태소와 형식 형태소의 분리)

  • Cha, Yong-Tae;Cho, Se-Hyeong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11a
    • /
    • pp.577-580
    • /
    • 2002
  • 자연어의 처리를 위해 반드시 필요한 형태소 분석에는 여러 가지 방법이 있으나 기본적으로 사전을 갖춘 상태에서 가장 가능성 있는 후보를 선택하는 방식을 선택한다. 이러한 방식으로는 사전이 없는 미지의 언어를 분석하기는 불가능하다. 기지의 언어라도 지속적으로 어휘가 변하는 경우나 매우 특별한 분야의 경우에는 필요로 하는 사전이 존재하지 않는다. 본 논문에서는 태그가 없는 단순 말뭉치만을 가지고 자율학습을 이용하여 한국어의 실질 형태소와 형식 형태소를 분리해내는 기법에 대하여 기술한다.

  • PDF

Adaptive English Context-Sensitive Spelling Error Correction Techniques for Language Environments (언어 사용환경에 적응적인 영어 문맥의존 철자오류 교정 기법)

  • Kim, Minho;Jin, Jingzhi;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.133-136
    • /
    • 2015
  • 문서 교정기에서 문맥의존 철자오류를 교정하는 방법은 크게 규칙을 이용한 방법과 통계 정보를 이용한 방법으로 나뉜다. 한국어와 달리 영어는 오래전부터 통계 모형에 기반을 둔 문맥의존 철자오류 교정 연구가 활발히 이루어졌다. 그러나 대부분 연구가 문맥의존 철자오류 교정 문제를 특정 어휘 쌍을 이용한 분류 문제로 간주하기 때문에 실제 응용에는 한계가 있다. 또한, 대규모 말뭉치에서 추출한 통계 정보를 이용하지만, 통계 정보 자체에 오류가 있을 경우를 고려하지 않았다. 본 논문에서는 텍스트에 포함된 모든 단어에 대하여 문맥의존 철자오류 여부를 판단하고, 해당 단어가 오류일 경우 대치어를 제시하는 영어 문맥의존 철자오류 교정 기법을 제안한다. 또한, 통계 정보의 오류가 문맥의존 철자오류 교정에 미치는 영향과 오류 발생률의 변화가 철자오류 검색과 교정의 정확도와 재현율에 미치는 영향을 분석한다. 구글 웹데이터에서 추출한 통계 정보를 바탕으로 통계 모형을 구성하고 평가를 위해 브라운 말뭉치에서 무작위로 2,000문장을 추출하여 무작위로 문맥의존 철자오류를 생성하였다. 실험결과, 문맥의존 철자오류 검색의 정확도와 재현율은 각각 98.72%, 95.79%였으며, 문맥의존 철자오류 교정의 정확도와 재현률은 각각 71.94%, 69.81%였다.

  • PDF

Korean Composed Noun Phrase Chunking Using CRF (CRF를 이용한 한국어 문장의 복합명사 상당어구 묶음)

  • Park, Byul;Seon, Choong-Nyoung;Seo, Jung-Yun
    • Annual Conference on Human and Language Technology
    • /
    • 2011.10a
    • /
    • pp.90-93
    • /
    • 2011
  • 구분분석은 문장을 분석하여 문장의 구문 구조를 밝히는 작업으로, 문장이 길어질수록 문장의 중의성이 높아져 구문분석 복잡도를 증사시키고 성능이 떨어진다. 구문분석의 복잡도를 감소시키기 위한 방법 중 하나로 구묶음을 하는데 본 논문에서는 하나의 명사처럼 쓰일 수 있는 둘 이상의 연속된 명사, 대명사, 수사, 숫자와 이를 수식하는 관형사, 접두사 및 접미사를 묶어서 복합명사 상당어구라고 정의하고 복합명사 상당어구 인식 시스템을 제안한다. 본 논문은 복합명사 상당어구 인식을 기계학습을 이용한 태그 부착 문제로 간주하였다. 문장 내 띄어쓰기, 어절의 어휘 정보, 어절 내 형태소들의 품사 정보와 품사-어휘 정보를 함께 자질로 사용하였다. 실험을 위하여 세종 구문분석 말뭉치 7만여 문장을 학습과 평가에 사용했으며, 실험결과는 95.97%의 정확률과 95.11%의 재현율, 95.54%의 $F_1$-평가치를 보였고, 구문분석의 전처리로써 사용하였을 때 구문분석의 성능과 속도가 향상됨을 보였다.

  • PDF

Enhancing Performance of Bilingual Lexicon Extraction through Refinement of Pivot-Context Vectors (중간언어 문맥벡터의 정제를 통한 이중언어 사전 구축의 성능개선)

  • Kwon, Hong-Seok;Seo, Hyung-Won;Kim, Jae-Hoon
    • Journal of KIISE:Software and Applications
    • /
    • v.41 no.7
    • /
    • pp.492-500
    • /
    • 2014
  • This paper presents the performance enhancement of automatic bilingual lexicon extraction by using refinement of pivot-context vectors under the standard pivot-based approach, which is very effective method for less-resource language pairs. In this paper, we gradually improve the performance through two different refinements of pivot-context vectors: One is to filter out unhelpful elements of the pivot-context vectors and to revise the values of the vectors through bidirectional translation probabilities estimated by Anymalign and another one is to remove non-noun elements from the original vectors. In this paper, experiments have been conducted on two different language pairs that are bi-directional Korean-Spanish and Korean-French, respectively. The experimental results have demonstrated that our method for high-frequency words shows at least 48.5% at the top 1 and up to 88.5% at the top 20 and for the low-frequency words at least 43.3% at the top 1 and up to 48.9% at the top 20.

Lexicon Feature Infused Character-Based LSTM CRFs for Korean Named Entity Recognition (문자 기반 LSTM-CRF 한국어 개체명 인식을 위한 사전 자질 활용)

  • Min, Jin-Woo;Na, Seung-Hoon
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.99-101
    • /
    • 2016
  • 문자 기반 LSTM CRF는 개체명 인식에서 높은 인식을 보여주고 있는 LSTM-CRF 방식에서 미등록어 문제를 해결하기 위해 단어 단위의 임베딩 뿐만 아니라 단어를 구성하는 문자로부터 단어 임베딩을 합성해 내는 방식으로 기존의 LSTM CRF에서의 성능 향상을 가져왔다. 한편, 개체명 인식에서 어휘 사전은 성능향상을 위한 외부 리소스원으로 활용하고 있는데 다양한 사전 매칭 방법이 파생될 수 있음에도 이들 자질들에 대한 비교 연구가 이루어지지 않았다. 본 논문에서는 개체명 인식을 위해 다양한 사전 매칭 자질들을 정의하고 이들을 LSTM-CRF의 입력 자질로 활용했을 때의 성능 비교 결과를 제시한다. 실험 결과 사전 자질이 추가된 LSTM-CRF는 ETRI 개체명 말뭉치의 학습데이터에서 F1 measure 기준 최대 89.34%의 성능까지 달성할 수 있었다.

  • PDF

Using CRF (Conditional Random Fields) to Predict Phrase Breaks in Korean (CRF를 이용한 한국어 운율 경계 추정)

  • Kim, Seung-Won;Kim, Byeong-Chang;Jeong, Min-Woo;Lee, Gary Geun-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2005.10a
    • /
    • pp.134-138
    • /
    • 2005
  • 본 논문은 한국어 TTS(Text-To-Speech)에서 운율 경계를 추정하는 문제를 클래스 분류문제로 보고 CRF(Conditional Random Fields)를 적용하여 운율 경계를 추정하였다. 우리는 품사와 운율 경계로 구성된 말뭉치를 사용하여 품사, 어휘, 단어의 길이, 문장에서의 단어 위치와 같은 다양한 속성의 언어적 자질을 추출하여 CRF를 훈련시켰으며, 자질들을 서로 조합하여 최고의 성능을 보이는 자질 집합을 골랐다 또한 가우스 평활 (Gaussian Smoothing)을 적용하여 데이터의 희소성 문제를 줄였다. 실험 결과에서 본 방법이 기존의 방법보다 성능이 좋을 뿐만 아니라 운율 경계를 추정하기 위한 자질을 독립시켰기 때문에 다른 시스템과의 호환성도 높다는 것을 알 수 있었다.

  • PDF

Construction and application of Korean Semantic-Network based on Korean Dictionary (사전을 기반으로 한 한국어 의미망 구축과 활용)

  • 최호섭;옥철영;장문수;장명길
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.448-450
    • /
    • 2002
  • 시소러스 의미망, 온톨로지 등과 같은 지식베이스는 자연언어처리와 관련된 여러 분야에서 중요한 언어자원의 역할을 담당하고 있다. 하지만 정보검색, 기계번역과 같은 특정 분야마다 다르게 구축되어 이러한 지식베이스는 실질적인 한국어 처리에는 크게 효과를 보지 못하고 있는 실정이다. 본 논문은 한국어를 대상으로 한 시소러스, 의미망의 등의 구축 방법론적 문제를 지적하고 말뭉치를 중심으로 한 텍스트 언어처리에 필요한 의미망의 구축 방법과 포괄적인 활용방안을 모색한다. 의미망 구축의 기반이 되는 지식은 각종 사전(dictionary)를 이용했으며, 구축하고 있는 의미망의 활용 가능성을 평가하기 위하여 ETRI의 의미기반 정보검색과 언어처리의 큰 문제 중 하나인 단어 중의성 해소(WSD)에서 어떻게 활용되는지를 살핀다. 그리하여 언어자인의 처리 방안 중의 하나인 의미망을 구축함으로써 언어를 효과적으로 처리하기 위한 기본적이면서 중요한 어휘 데이터베이스 마련과 동시에 언어자원 구축의 한 방향을 제시하고자 한다.

  • PDF