Annual Conference on Human and Language Technology
/
2011.10a
/
pp.107-109
/
2011
기계학습은 학습말뭉치로부터 문제를 해결하기 위한 규칙을 학습하여 모델을 생성한다. 생성된 모델의 성능을 높이기 위해서는 문제에 적합한 자질들을 많이 이용해야 하지만 많은 자질들을 사용하면 모델의 생성시간은 느려지는 것이 사실이다. 이 문제를 해결하기 위해 본 논문에서는 다단계 기법을 적용한 기계학습으로 구묶음 시스템을 제작하여 학습모델의 생성시간을 단축하고 성능을 높이는 기법을 제안한다. 많은 종류의 자질들을 두 단계로 분리하여 학습하는 기법으로 1단계에서 구의 경계를 인식하고 2단계에서 구의태그를 결정한다. 1단계의 학습자질은 어휘 정보, 품사 정보, 띄어쓰기 정보, 중심어 정보를 사용하였으며, 2단계 학습자질은 어휘 정보와 품사 정보 외에 1단계 결과에서 추출한 구의 시작 품사 정보와 끝 품사 정보, 구 정보, 구 품사 정보를 자질로 사용하였다. 평가를 위해서 본 논문에서는 ETRI 구문구조 말뭉치를 사용하였다.
Annual Conference on Human and Language Technology
/
2013.10a
/
pp.27-32
/
2013
본 논문은 잘 알려지지 않은 언어 쌍에 대해서 병렬말뭉치(parallel corpus)로부터 자동으로 이중언어 사전을 추출하는 방법을 제안하였다. 이 방법은 중간언어(pivot language)를 매개로 하고 문맥 벡터를 생성하기 위해 공개된 단어 정렬 도구인 Anymalign을 사용하였다. 그 결과로 초기사전(seed dictionary)을 사용한 문맥벡터의 번역 과정이 필요 없으며 통계적 방법의 약점인 낮은 빈도수를 가지는 어휘에 대한 번역 정확도를 높였다. 또한 문맥벡터의 요소 값으로 특정 임계값 이상을 가지는 양방향 번역 확률 정보를 사용하여 상위 5위 이내의 번역 정확도를 크게 높였다. 본 논문은 두 개의 서로 다른 언어 쌍 한국어-스페인어 그리고 한국어-프랑스어 양방향에 대해서 각각 이중언어 사전을 추출하는 실험을 하였다. 높은 빈도수를 가지는 어휘에 대한 번역 정확도는 이전 연구에서 보인 실험 결과에 비해 최소 3.41% 최대 67.91%의 성능 향상을 보였고 낮은 빈도수를 가지는 어휘에 대한 번역 정확도는 최소 5.06%, 최대 990%의 성능 향상을 보였다.
The Journal of the Convergence on Culture Technology
/
v.10
no.3
/
pp.565-577
/
2024
This discussion looked at how emotional adjectives are connected in the format [[emotional adjective + '-ko(and)'] + emotional adjective]. As a result, it was confirmed that there are quite a few cases in which two or more emotional adjectives are used to express emotions in Korean. This can help Korean learners understand and express the individual lexical meanings of emotional adjectives more clearly by identifying emotional adjectives that are used together with the corresponding configuration. It was believed that it could help Korean language learners express complex emotions or create rich emotional expressions when expressing their emotions in Korean. It is hoped that the examples and frequency of [[emotional adjective+'-ko(and)'+emotional adjective] shown in this discussion will be of some help in teaching and learning Korean emotional vocabulary.
Proceedings of the Korea Information Processing Society Conference
/
2002.11a
/
pp.577-580
/
2002
자연어의 처리를 위해 반드시 필요한 형태소 분석에는 여러 가지 방법이 있으나 기본적으로 사전을 갖춘 상태에서 가장 가능성 있는 후보를 선택하는 방식을 선택한다. 이러한 방식으로는 사전이 없는 미지의 언어를 분석하기는 불가능하다. 기지의 언어라도 지속적으로 어휘가 변하는 경우나 매우 특별한 분야의 경우에는 필요로 하는 사전이 존재하지 않는다. 본 논문에서는 태그가 없는 단순 말뭉치만을 가지고 자율학습을 이용하여 한국어의 실질 형태소와 형식 형태소를 분리해내는 기법에 대하여 기술한다.
Annual Conference on Human and Language Technology
/
2015.10a
/
pp.133-136
/
2015
문서 교정기에서 문맥의존 철자오류를 교정하는 방법은 크게 규칙을 이용한 방법과 통계 정보를 이용한 방법으로 나뉜다. 한국어와 달리 영어는 오래전부터 통계 모형에 기반을 둔 문맥의존 철자오류 교정 연구가 활발히 이루어졌다. 그러나 대부분 연구가 문맥의존 철자오류 교정 문제를 특정 어휘 쌍을 이용한 분류 문제로 간주하기 때문에 실제 응용에는 한계가 있다. 또한, 대규모 말뭉치에서 추출한 통계 정보를 이용하지만, 통계 정보 자체에 오류가 있을 경우를 고려하지 않았다. 본 논문에서는 텍스트에 포함된 모든 단어에 대하여 문맥의존 철자오류 여부를 판단하고, 해당 단어가 오류일 경우 대치어를 제시하는 영어 문맥의존 철자오류 교정 기법을 제안한다. 또한, 통계 정보의 오류가 문맥의존 철자오류 교정에 미치는 영향과 오류 발생률의 변화가 철자오류 검색과 교정의 정확도와 재현율에 미치는 영향을 분석한다. 구글 웹데이터에서 추출한 통계 정보를 바탕으로 통계 모형을 구성하고 평가를 위해 브라운 말뭉치에서 무작위로 2,000문장을 추출하여 무작위로 문맥의존 철자오류를 생성하였다. 실험결과, 문맥의존 철자오류 검색의 정확도와 재현율은 각각 98.72%, 95.79%였으며, 문맥의존 철자오류 교정의 정확도와 재현률은 각각 71.94%, 69.81%였다.
Annual Conference on Human and Language Technology
/
2011.10a
/
pp.90-93
/
2011
구분분석은 문장을 분석하여 문장의 구문 구조를 밝히는 작업으로, 문장이 길어질수록 문장의 중의성이 높아져 구문분석 복잡도를 증사시키고 성능이 떨어진다. 구문분석의 복잡도를 감소시키기 위한 방법 중 하나로 구묶음을 하는데 본 논문에서는 하나의 명사처럼 쓰일 수 있는 둘 이상의 연속된 명사, 대명사, 수사, 숫자와 이를 수식하는 관형사, 접두사 및 접미사를 묶어서 복합명사 상당어구라고 정의하고 복합명사 상당어구 인식 시스템을 제안한다. 본 논문은 복합명사 상당어구 인식을 기계학습을 이용한 태그 부착 문제로 간주하였다. 문장 내 띄어쓰기, 어절의 어휘 정보, 어절 내 형태소들의 품사 정보와 품사-어휘 정보를 함께 자질로 사용하였다. 실험을 위하여 세종 구문분석 말뭉치 7만여 문장을 학습과 평가에 사용했으며, 실험결과는 95.97%의 정확률과 95.11%의 재현율, 95.54%의 $F_1$-평가치를 보였고, 구문분석의 전처리로써 사용하였을 때 구문분석의 성능과 속도가 향상됨을 보였다.
This paper presents the performance enhancement of automatic bilingual lexicon extraction by using refinement of pivot-context vectors under the standard pivot-based approach, which is very effective method for less-resource language pairs. In this paper, we gradually improve the performance through two different refinements of pivot-context vectors: One is to filter out unhelpful elements of the pivot-context vectors and to revise the values of the vectors through bidirectional translation probabilities estimated by Anymalign and another one is to remove non-noun elements from the original vectors. In this paper, experiments have been conducted on two different language pairs that are bi-directional Korean-Spanish and Korean-French, respectively. The experimental results have demonstrated that our method for high-frequency words shows at least 48.5% at the top 1 and up to 88.5% at the top 20 and for the low-frequency words at least 43.3% at the top 1 and up to 48.9% at the top 20.
문자 기반 LSTM CRF는 개체명 인식에서 높은 인식을 보여주고 있는 LSTM-CRF 방식에서 미등록어 문제를 해결하기 위해 단어 단위의 임베딩 뿐만 아니라 단어를 구성하는 문자로부터 단어 임베딩을 합성해 내는 방식으로 기존의 LSTM CRF에서의 성능 향상을 가져왔다. 한편, 개체명 인식에서 어휘 사전은 성능향상을 위한 외부 리소스원으로 활용하고 있는데 다양한 사전 매칭 방법이 파생될 수 있음에도 이들 자질들에 대한 비교 연구가 이루어지지 않았다. 본 논문에서는 개체명 인식을 위해 다양한 사전 매칭 자질들을 정의하고 이들을 LSTM-CRF의 입력 자질로 활용했을 때의 성능 비교 결과를 제시한다. 실험 결과 사전 자질이 추가된 LSTM-CRF는 ETRI 개체명 말뭉치의 학습데이터에서 F1 measure 기준 최대 89.34%의 성능까지 달성할 수 있었다.
Kim, Seung-Won;Kim, Byeong-Chang;Jeong, Min-Woo;Lee, Gary Geun-Bae
Annual Conference on Human and Language Technology
/
2005.10a
/
pp.134-138
/
2005
본 논문은 한국어 TTS(Text-To-Speech)에서 운율 경계를 추정하는 문제를 클래스 분류문제로 보고 CRF(Conditional Random Fields)를 적용하여 운율 경계를 추정하였다. 우리는 품사와 운율 경계로 구성된 말뭉치를 사용하여 품사, 어휘, 단어의 길이, 문장에서의 단어 위치와 같은 다양한 속성의 언어적 자질을 추출하여 CRF를 훈련시켰으며, 자질들을 서로 조합하여 최고의 성능을 보이는 자질 집합을 골랐다 또한 가우스 평활 (Gaussian Smoothing)을 적용하여 데이터의 희소성 문제를 줄였다. 실험 결과에서 본 방법이 기존의 방법보다 성능이 좋을 뿐만 아니라 운율 경계를 추정하기 위한 자질을 독립시켰기 때문에 다른 시스템과의 호환성도 높다는 것을 알 수 있었다.
Proceedings of the Korean Information Science Society Conference
/
2002.04b
/
pp.448-450
/
2002
시소러스 의미망, 온톨로지 등과 같은 지식베이스는 자연언어처리와 관련된 여러 분야에서 중요한 언어자원의 역할을 담당하고 있다. 하지만 정보검색, 기계번역과 같은 특정 분야마다 다르게 구축되어 이러한 지식베이스는 실질적인 한국어 처리에는 크게 효과를 보지 못하고 있는 실정이다. 본 논문은 한국어를 대상으로 한 시소러스, 의미망의 등의 구축 방법론적 문제를 지적하고 말뭉치를 중심으로 한 텍스트 언어처리에 필요한 의미망의 구축 방법과 포괄적인 활용방안을 모색한다. 의미망 구축의 기반이 되는 지식은 각종 사전(dictionary)를 이용했으며, 구축하고 있는 의미망의 활용 가능성을 평가하기 위하여 ETRI의 의미기반 정보검색과 언어처리의 큰 문제 중 하나인 단어 중의성 해소(WSD)에서 어떻게 활용되는지를 살핀다. 그리하여 언어자인의 처리 방안 중의 하나인 의미망을 구축함으로써 언어를 효과적으로 처리하기 위한 기본적이면서 중요한 어휘 데이터베이스 마련과 동시에 언어자원 구축의 한 방향을 제시하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.