• 제목/요약/키워드: 한국어 문법

검색결과 345건 처리시간 0.032초

형태소 깎는 노인: 국어사 자료를 위한 형태분석 보조기 (The POS Elderly: Semi-automatic annotation tool for Historical Korean)

  • 김미경;박수지;이상아
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.39-43
    • /
    • 2016
  • '형태소 깎는 노인'은 국어사 자료를 처리하는 고성능 자동 형태분석기의 개발이 난항을 겪고 있는 상황에서 수동으로 형태분석 작업을 하는 연구자들을 지원하기 위하여 개발된 형태분석 보조기이다. 인간과 기계의 분업을 통해 인간의 피로를 최대한 줄이고, 단순 반복 형태에 대해서는 정답을 확실하게 제안할 수 있다는 것이 특징이다. 국어사 자료에는 한국어 정보처리를 위해 필요한 어휘 사전이 없으므로, 문법형태소 사전을 만들어 이를 단서로 조사/어미부와 어간부를 구분하도록 하였다. 이를 통해 구축된 소규모 형태분석 말뭉치들이 장기적으로는 자동 형태분석기의 성능 개선에 일조할 수 있을 것으로 기대한다.

  • PDF

연속분포 HMM을 이용한 한국어 연속 음성 인식 시스템 개발 (On the Development of a Continuous Speech Recognition System using Continuous Hidden Markov Model for Korean Language)

  • 김도영;박용규;권오욱;은종관
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1993년도 제5회 한글 및 한국어정보처리 학술대회
    • /
    • pp.101-110
    • /
    • 1993
  • 본 논문에서는 연속분포 hidden Markov 모델을 이용한 화자독립 연속 음성 인식 시스템에 관해 기술한다. 연속분포 모델은 평균과 분산 벡터로 구성되며 음성신호를 직접 모델링하여 양자화 왜곡이 없어진다. 특징벡터는 filter bank 계수 및 그 1, 2차 미분계수를 사용하여 음성신호의 동적 특성을 반영하였다. Segmental K-means 알고리즘을 이용하여 학습하였으며, 연속어 인식에서 가장 문제가 되는 조음화 현상으로 인한 인식률 저하를 막기 위해 앞뒤의 음소를 고려해 주는 triphone을 인식단위로 사용하였다. Search 알고리즘으로는 시간 면에서 효율이 좋은 one-pass search 알고리즘을 사용하였다. 성능 평가를 위한 화자 독립 인식 실험에서 문법이 없을 경우 83%, finite state network율 적용한 경우에는 94%의 인식률을 나타내었다.

  • PDF

언어·청각장애인을 위한 한국 수어 번역기 개발 (Development of Korean Sign Language Translator for Speech and Hearing Impaired)

  • 조수범;이동규;조영찬;서동만
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.575-576
    • /
    • 2023
  • 한국 수어는 소리로 말을 배울 수 없어서 사용하는 '보이는 언어'이고 한국수화언어를 줄인 말이다. 한국어나 영어와 같이 독립된 언어로 한국어와는 문법 체계가 다른 대한민국 농인의 고유한 언어이다. 하지만, 한국 사회에서는 수어를 일상어로 사용하는 농인이 수어만으로 다른 사람과 대화하거나 서비스 등을 이용하기에는 쉽지 않은 구조이다. 이에 본 논문에서는 택시라는 상황을 가정해 택시 안에서 학습된 모델이 농인의 수어를 인식하고 택시 기사에게 해당 의미를 전달하는 시스템을 제안한다. 제안 시스템을 통해 택시 기사는 농인(수어사용자)에게 응답할 수 있다. 본 논문에서는 한국수어 번역기 웹서비스를 설계 및 구현하여 실제 환경에서의 활용 가능성을 검증한다.

언어 유형학적인 비교를 통한 독일어와 한국어 동사의 부정성 ($Infinitivit\"{a}t$ des deutschen und koreanischen Verbs - Im sprachtypologischen Vergleich beider Sprachen)

  • 박진길
    • 한국독어학회지:독어학
    • /
    • 제6집
    • /
    • pp.79-98
    • /
    • 2002
  • 지금까지 우리는 한국어와 독일어를 비교하면서 동사의 정형과 부정형을 관찰해 왔다. 이 부정성(역으로 말하면 비구속성)은 한국어 동사에는 전반적으로 통용되는 데 반해 독일어에는 부정형/동사원형과 분사가 그러할 뿐이다. 동사의 특성 연구는 어느 자연어/개별언어의 상이한 기능을 위해서 뿐만이 아니라 외국어 학습/습득을 위해서도 큰 의미를 갖는다. 이러한 중요성에도 불구하고 독특한 한국어 동사의 부정성, 그 연구는 거의 찾아볼 수가 없다. 한국어와 독일어 동사의 부정성 비교에서 드러난 문제점은 대체로 다음과 같이 요약될 수 있을 것이다. $\ast$ 한국어 동사의 특징인 부정성은 우리의 운명으로 간주해야 할 것이다. 왜냐하면 우리가 어떤 면에서는 유익함을, 그리고 어떤 다른 면에서는 문제점을 감수해야 하기 때문이다. 특히 전형적인 전치성 언어인 유럽언어를 습득할 때 언어간섭현상을 통해 그러하다. $\ast$ 독일어의 부정사/분사 및 한국어 동사가 인칭변화를 하지 않는다는 것은 그들이 주어를 갖지 않고 있거나 (독일어의 경우), 아니면 그것이 어떤 문법/통사적 역할을 하는가 (한국어의 경우)에 주된 원인이 있다. $\ast$ 비교 대상의 양쪽은 생략가능성, 즉 원자가 요구에 대한 자유/비구속성을 누린다. 핵(성분), 즉 독일어의 부정형 및 분사 그리고 한국어 동사는 혼자 남을 때까지 생략이 계속될 수 있다. 이러한 의미에서 부정성은 <비한정성/비구속성>과 관련된 것 같으며, 반면에 정동사의 특성은 <한정성/구속성>과 관계되어 있다. $\ast$ 원자가 요구/충족에 대한 자유/비구속성은 한국어 동사/술어가 문장 끝에 고정되어 있다는 사실은, 직접 또는 간접으로 본동사 앞에 놓여 있어야 되는 모든 문장성분과 부문장 때문에, 즉 한국어의 전면적인 전위수식 현상으로 흔히 큰 부담/복잡함을 야기한다는 데에 그 원인이 있다. 이러한 상황에서 동사는 가능한 한 그의 문장성분을 줄이려 한다. 통사적으로 보장되어 이미 있으니 말이다. 그래서 한국어 동사의 부정성은 일종의 부담해소 대책으로 간주될 수 있을 것이다. $\ast$ 두 비교 대상에서의 핵 및 최소문장 가능성은 역시 원자가에 대한 비구속성에서 비롯된다. $\ast$ 우리 한국인이 빨리 말할 때 흔히 범하는 부정성으로 인한 인칭변화에서의 오류는 무엇보다도 정형성/제한성을 지닌 독일어 정동사가 인칭 변화하는 데 반해 한국어에서는 부정성/비구속성을 지닌 동사가 그것과는 무관한 페 기인한다. 동사의 속성을 철저히 분석함으로써 이런 과오를 극복해야 할 것이다. 한국어 동사의 부정성은 지금까지 거의 연구되지 않았다. 이 문제는 또한 지속적으로 수많은 다른 자연어들과의 비교분석을 통해 관찰돼야 할 것이다. 이 논문이 이런 연구와 언어습득을 위한 작업에 도움이 되기를 바란다.

  • PDF

한국어 특수구문 처리를 위한 파서의 구현 (An implementation of parser for special syntax processing in Korea)

  • 김재문;이상국;이상조
    • 전자공학회논문지B
    • /
    • 제31B권11호
    • /
    • pp.124-135
    • /
    • 1994
  • 본 논문에서는 한국어 특수구문의 처리를 위한 국어 구문 분석 시스템을 제안한다. 문법의 기술은 동사와 의미를 통합적으로 처리하는 HPSG를 채택하고, 파싱 기법으로는 한국어에 유리한 단방향 활성 차트 파싱을 사용한다. 본 논문의 파서는 포괄적인 문장 구조(보어-중심어 구조, 수식어-중심어 구조, 중심어-중심어 구조)의 처리뿐만 아니라, 실용적인 문장에서 많이 나타나는 보조용언 구몬, 사동문, 피동문, 명사화 어미, 존칭, 화계와 같은 특수구문에 대해서도 파싱을 할 수 있도록 구현되었다.

  • PDF

한국어 형태소 분석기 HAM의 형태소 분석 및 철자 검사 기능 (Morphological Analysis and Spelling Check Function of Korean Morphological Analyzer HAM)

  • 강승식;이하규
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1996년도 제8회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.246-252
    • /
    • 1996
  • 한국어 형태소 분석기의 효율성에 영향을 미치는 요인은 분석 알고리즘의 효율성보다도 어휘 사전 등 형태소 분석과 관련된 여러 가지 요인들이 미치는 영향이 훨씬 더 크다. 따라서 단어의 유형 분류 기법이나 불규칙 용언의 분석 방법을 비롯하여 어휘 사전의 구조 및 크기, 알고리즘의 선택과 구현 등 형태소 분석과 관련된 모든 요소들을 형태소 분석에 적합하도록 구성하여야 한다. 본 논문에서는 어휘형태소 사전과 문법형태소 사전의 크기, 한글 문서에 나타나는 단어의 특성 등 형태소 분석기의 효율 및 성능에 영향을 미치는 요소들을 고찰하였다. 그 결과로 알고리즘의 효율보다는 사전 탐색 시간이 형태소 분석에 미치는 영향이 매우 크다는 것을 알 수 있었다. 이와 같이 형태소 분석기의 성능에 영향을 미치는 요인들을 고려하여 구현된 범용 형태소 분석기 HAM에 대하여 형태소 분석 기능과 철자 검사 기능을 실험하였다. 형태소 분석 성공률에 대한 실험 결과 99.46%의 분석률을 보이고 있으며, 맞춤법 검사 기능으로는 상용화된 철자 검사기와 비슷한 성능을 보이고 있다. HAM의 처리 속도는 pentium 120MHz linux 2.0 환경에서 1 초에 약 1,000 단어를 분석한다.

  • PDF

한국어 관계관형절의 전산처리 (Processing Korean Relative Adnominal Clauses)

  • 홍정하;이기용
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1999년도 제11회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.265-271
    • /
    • 1999
  • 이 논문은 한국어 관계관형절(relative adnominal clause)의 전산처리에 적합한 통사 의미 표상 모형을 제시하고, 그 결과를 전산적 구현을 통해서 검증하는 것이 목적이다. 이를 위해 이 논문에서는 다음의 두 가지 문제를 중심으로 관계관형절의 통사 의미 표상과 전산적 구현 문제를 다룬다. 첫째, 관계관형절의 수식을 받는 머리 명사(head noun)는 관계관형절과 모문(matrix sentence)에서 각각 다른 의미역할을 하는 논항이다. 즉, 하나의 논항이 두 개의 의미역을 표상한다. 이 논문의 첫째 과제는 이러한 관계관형절 구문에서 머리 명사의 이중의미역을 표상하는 방법을 모색하는 것이다. 둘째, 관계관형절이 일항술어로 구성될 때, 서술어 단독으로 머리 명사를 수식할 수 있을 뿐만 아니라, 주격중출 구문을 관계화하여 미리 명사를 수식할 수도 있다. 그러나 모든 일항술어가 주격중출 구문을 구성할 수 있는 것은 아니기 때문에 주격중출 구문의 관계화가 가능한 경우와 그렇지 않은 경우를 구별할 필요가 있다. 이 논문의 둘째 과제는 이러한 주격중출 구문의 관계화와 그 표상의 문제를 다루는 것이다. 이 논문에서는 이러한 문제들을 단순히 기술하는 데 그치지 않고 전산 구현을 통해 문제해결을 제시한다. 이를 위해 구현 도구로 C-언어를 보강하여 개발한 문법개발 도구언어인 말라가(Malaga)를 사용하며, 분석결과를 자질구조(feature structure)로 명시하여 그 타당성을 검토한다.

  • PDF

DECO-LGG 언어자원 및 의존파서와 LSTM을 활용한 하이브리드 자질기반 감성분석 플랫폼 DecoFESA 구현 (DecoFESA: A Hybrid Platform for Feature-based Sentiment Analysis Based on DECO-LGG Linguistic Resources with Parser and LSTM)

  • 황창회;유광훈;남지순
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.321-326
    • /
    • 2020
  • 본 연구에서는 한국어 감성분석 성능 향상을 위한 DECO(Dictionnaire Electronique du COreen) 한국어 전자사전과 LGG(Local-Grammar Graph) 패턴문법 기술 프레임에 의존파서 및 LSTM을 적용하는 하이브리드 방법론을 제안하였다. 본 연구에 사용된 DECO-LGG 언어자원을 소개하고, 이에 기반하여 의미 정보를 의존파서(D-PARS)와 페어링하는 한편 OOV(Out Of Vocabulary)의 문제를 LSTM을 통해 해결하여 자질기반 감성분석 결과를 제시하였다. 부트스트랩 방식으로 반복 확장될 수 있는 LGG 언어자원 및 알고리즘을 통해 수행되는 자질기반 감성분석 프로세스는 전용 플랫폼 DecoFESA를 통해 그 범용성을 확장하였다. 실험을 위해서 네이버 쇼핑몰의 '화장품 구매 후기글'을 크롤링하였으며, DecoFESA 플랫폼을 통해 현재 구축된 DECO-LGG 언어자원 기반의 감성분석 성능을 평가하였다. 이를 통해 대용량 언어자원의 구축과 이를 활용하기 위한 어휘 시퀀스 처리 알고리즘의 구현이 보다 정확한 자질기반 감성분석 결과를 제공할 수 있음을 확인하였다.

  • PDF

생성형 AI 모델을 활용한 요약 성능 평가 연구 ( A Study on Evaluating Summarization Performance using Generative Al Model)

  • 최규리;박서윤;강예지;김한샘
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.228-233
    • /
    • 2023
  • 인간의 수동 평가 시 시간과 비용의 소모, 주석자 간의 의견 불일치, 평가 결과의 품질 등 불가피한 한계가 발생한다. 본 논문에서는 맥락을 고려하고 긴 문장 입출력이 가능한 ChatGPT를 활용한 한국어 요약문 평가가 인간 평가를 대체하거나 보조하는 것이 가능한가에 대해 살펴보았다. 이를 위해 ChatGPT가 생성한 요약문에 정량적 평가와 정성적 평가를 진행하였으며 정량적 지표로 BERTScore, 정성적 지표로는 일관성, 관련성, 문법성, 유창성을 사용하였다. 평가 결과 ChatGPT4의 경우 인간 수동 평가를 보조할 수 있는 가능성이 있음을 확인하였다. ChatGPT가 영어 기반으로 학습된 모델임을 고려하여 오류 발견 성능을 검증하고자 한국어 오류 요약문으로 추가 평가를 진행하였다. 그 결과 ChatGPT3.5와 ChatGPT4의 오류 요약 평가 성능은 불안정하여 인간을 보조하기에는 아직 어려움이 있음을 확인하였다.

  • PDF

호텔예약을 위한 음성번역시스템 (A Speech Translation System for Hotel Reservation)

  • 구명완;김재인;박상규;김우성;장두성;홍영국;장경애;김응인;강용범
    • 한국음향학회지
    • /
    • 제15권4호
    • /
    • pp.24-31
    • /
    • 1996
  • 이 논문에서는 호텔예약을 위한 음성번역시스템(KT-STS:Korea Telecom Speech Translation System)에 대해 기술한다. KT-STS는 한국손님이 일본의 호텔을 예약하고자 할 때 사용할 수 있는 시스템으로 한국어 음성을 인식하여 일본어로 번역을 해주는 시스템이다. 이 시스템은 한국어 음성인식부, 한일 기계번역부, 그리고 한국어 음성합성부로 구성되어 있다. 한국어 음성인식부는 HMM(Hidden Markov Model)에 근거한 화자독립, 300 단어급 연속음성인식시스템이다. 언어모델은 바이그램(bigram)을 전향 언어모델로, 의존문법을 후향 언어모델로 사용한다. 기계번역부에서는 의존문법과 직적 번역 방식을 사용하였다. 음성합성부에서 합성단위로 반음소를 사용하며 합성방식은 주기파형분해 및 재배치 방식을 이용한다. KT-STS는 TMS320C30 DSP 보드를 장착한 SPARC20 위크스테이션 상에서 거의 실시간으로 동작한다. 음성인식 실험결과 94.68%의 단어인식률과 82.42%의 문장인식률을 얻었으며, 한일 번역기만의 번역 성공률은 100%였다. 우리는 이 시스템과 일본 KDD에서 개발한 시스템을 전용선으로 연결하여 한일간 자동통역 국제시연을 가진 바 있다.

  • PDF