• Title/Summary/Keyword: 한국어 뉴스

Search Result 115, Processing Time 0.027 seconds

N-gram Adaptation using Information Retrieval and Dynamic Interpolation Coefficient (정보검색 기법과 동적 보간 계수를 이용한 N-gram 적응)

  • Choi, Joon-Ki;Oh, Yung-Hwan
    • Proceedings of the KSPS conference
    • /
    • 2005.11a
    • /
    • pp.107-112
    • /
    • 2005
  • 연속음성인식을 위한 언어모델 적응기법은 특정 영역의 정보만을 담고 있는 적응 코퍼스를 이용해 작성한 적응 언어모델과 기본 언어모델을 병합하는 방법이다. 본 논문에서는 추가되는 자료 없이 인식 시스템이보유하고 있는 코퍼스만을 사용하여 적응 코퍼스를 구축하기 위해 언어모델에 기반한 정보검색 기법을 사영하였다. 검색된 적응 코퍼스로 작성된 적응 언어모델과 기본 언어모델과의 병합을 위해 본 논문에서는 입력음성을 분할하여 각 구간에 최적인 동적 보간 계수를 구하는 방법을 제안하였다. 제안된 적응 코퍼스를 구하는 방법과 동적 보간 계수는 기본 언어모델 대비절대 3.6%의 한국어 방송뉴스 인식 성능 향상을 보여주었으며 기존의 검증자료를 이용한 정적 보간 계수에 비해 상대 13.6%의 한국어 방송뉴스 인식 성능 향상을 보여 주었다.

  • PDF

Document Embedding and Image Content Analysis for Improving News Clustering System (뉴스 클러스터링 개선을 위한 문서 임베딩 및 이미지 분석 자질의 활용)

  • Kim, Siyeon;Kim, Sang-Bum
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.104-108
    • /
    • 2015
  • 많은 양의 뉴스가 생성됨에 따라 이를 효과적으로 정리하는 기법이 최근 활발히 연구되어왔다. 그 중 뉴스클러스터링은 두 뉴스가 동일사건을 다루는지를 판정하는 분류기의 성능에 의존적인데, 대부분의 경우 BoW(Bag-of-Words)기반 벡터유사도를 사용하고 있다. 본 논문에서는 BoW기반의 벡터유사도 뿐 아니라 두 문서에 포함된 사진들의 유사성 및 주제의 관련성을 측정, 이를 분류기의 자질로 추가하여 두 뉴스가 동일사건을 다루는지 판정하는 분류기의 성능을 개선하는 방법을 제안한다. 사진들의 유사성 및 주제의 관련성은 최근 각광을 받는 딥러닝기반 CNN과 신경망기반 문서임베딩을 통해 측정하였다. 실험결과 기존의 BoW기반 벡터유사도에 의한 분류기의 성능에 비해 제안하는 두 자질을 사용하였을 경우 3.4%의 성능 향상을 보여주었다.

  • PDF

Hypernews Detection using Sentence BERT Embedding (Sentence BERT 임베딩을 이용한 과편향 뉴스 판별)

  • Lim, Jungwoo;Whang, Taesun;Oh, Dongsuk;Yang, Kisu;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.388-391
    • /
    • 2019
  • 과편향 뉴스 판별(hyperpartisan news detection)은 뉴스 기사가 특정 인물 또는 정당에 편향되었는지 판단하는 task이다. 이를 위해 feature-based ELMo + CNN 모델이 제안되었으나, 이는 문서 임베딩이 아닌 단어 임베딩의 평균을 사용한다는 한계가 존재한다. 따라서 본 논문에서는 feature-based 접근법을 따르며 Sentence-BERT(SentBERT)의 문서 임베딩을 이용한 feature-based SentBERT 기반의 과편향 뉴스 판별 모델을 제안한다. 제안 모델의 효과를 입증하기 위해 ELMO, BERT, SBERT와 CNN, BiLSTM을 적용한 비교 실험을 진행하였고, 기존 state-of-the-art 모델보다 f1-score 기준 1.3%p 높은 성능을 보였다.

  • PDF

GMLP for Korean natural language processing and its quantitative comparison with BERT (GMLP를 이용한 한국어 자연어처리 및 BERT와 정량적 비교)

  • Lee, Sung-Min;Na, Seung-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.540-543
    • /
    • 2021
  • 본 논문에서는 Multi-Head Attention 대신 Spatial Gating Unit을 사용하는 GMLP[1]에 작은 Attention 신경망을 추가한 모델을 구성하여 뉴스와 위키피디아 데이터로 사전학습을 실시하고 한국어 다운스트림 테스크(감성분석, 개체명 인식)에 적용해 본다. 그 결과, 감성분석에서 Multilingual BERT보다 0.27%높은 Accuracy인 87.70%를 보였으며, 개체명 인식에서는 1.6%높은 85.82%의 F1 Score를 나타내었다. 따라서 GMLP가 기존 Transformer Encoder의 Multi-head Attention[2]없이 SGU와 작은 Attention만으로도 BERT[3]와 견줄만한 성능을 보일 수 있음을 확인할 수 있었다. 또한 BERT와 추론 속도를 비교 실험했을 때 배치사이즈가 20보다 작을 때 BERT보다 1에서 6배 정도 빠르다는 것을 확인할 수 있었다.

  • PDF

SNS news Recommendation by Using Cosine Similarity (코사인 유사도 기법을 이용한 뉴스 추천 시스템)

  • Kim, Simon;Kim, Hyung-Jun;Han, In-Kyu
    • Annual Conference on Human and Language Technology
    • /
    • 2013.10a
    • /
    • pp.163-166
    • /
    • 2013
  • 사용자별로 SNS/RSS 구독 뉴스 분석을 통해 사용자가 관심이 있는 새로운 뉴스를 추천해 주는 시스템을 설계하고 구현한다. 뉴스 추천 시스템의 설계를 위해 전체 시스템에서 사용자와 서버에서의 작업을 명세하고, 이중에 주요 기능을 담당하는 부분을 구현한다. 구현된 주요 기능은 선호 문서가 들어왔을 때 특징을 추출하고 이를 저장하는 것과 새로운 문서가 들어왔을 때 선호 문서군과 얼마나 유사한지 판별하여 문서에 대한 추천 여부를 결정하는 것이다. 선호 문서의 특징 추출에 대해서는 형태소 분석을 통해 단어와 빈도를 추출하고 이를 누적하여 저장한다. 또한, 새로운 문서가 들어왔을 때 코사인 유사도를 계산하여 사용자가 선호하는 학습문서와의 유사도 비교를 통해 문서 추천 여부를 결정한다. 구현된 시스템에서 실제로 연관된 선호 문서군을 학습시키고, 연관된 새로운 문서 혹은 연관되지 않은 새로운 문서에 대한 추천 여부를 비교하는 것으로 시스템 정확도를 파악한다.

  • PDF

Developing Corporate Valuation System with Opinion Mining Based on Big Data (빅데이터 기반의 오피니언 마이닝을 이용한 기업 가치 평가 시스템 개발)

  • Lee, Jung-Tae;Cheon, Mina;Lim, Sang-Woo;June, Byung-Seok;Kim, Jae-Hoon;Han, Yeong-Woo
    • Annual Conference on Human and Language Technology
    • /
    • 2013.10a
    • /
    • pp.126-128
    • /
    • 2013
  • 빅데이터(Big Data)는 현재 생산되고 있는 데이터 중 그 규모가 방대하고, 생성 주기가 짧으며, 수치 데이터 뿐 아니라 텍스트 이외의 멀티미디어 등 비정형화된 데이터를 포함하는 대규모 데이터를 말한다. 빅데이터를 처리하여 가치 있는 정보를 추출하는 방법에 관한 연구가 활발하게 진행되고 있으며, 이를 바탕으로 빅데이터가 다양한 분야에서 활용되고 있다. 현재 국내 주식시장에서도 빅데이터를 이용하여 기업의 투자에 활용하고 있다. 이 논문에서는 인터넷의 증권과 관련된 뉴스를 수집하여 수집된 뉴스와 주가 지수를 이용하여 기업 뉴스 평가 시스템을 개발하는 방법을 제안한다.

  • PDF

Detecting Improper Sentences in a News Article Using Text Mining (텍스트 마이닝을 이용한 기사 내 부적합 문단 검출 시스템)

  • Kim, Kyu-Wan;Sin, Hyun-Ju;Kim, Seon-Jin;Lee, Hyun Ah
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.294-297
    • /
    • 2017
  • SNS와 스마트기기의 발전으로 온라인을 통한 뉴스 배포가 용이해지면서 악의적으로 조작된 뉴스가 급속도로 생성되어 확산되고 있다. 뉴스 조작은 다양한 형태로 이루어지는데, 이 중에서 정상적인 기사 내에 광고나 낚시성 내용을 포함시켜 독자가 의도하지 않은 정보에 노출되게 하는 형태는 독자가 해당 내용을 진짜 뉴스로 받아들이기 쉽다. 본 논문에서는 뉴스 기사 내에 포함된 문단 중에서 부적합한 문단이 포함되었는지를 판정하기 위한 방법을 제안한다. 제안하는 방식에서는 자연어 처리에 유용한 Convolutional Neural Network(CNN)모델 중 Word2Vec과 tf-idf 알고리즘, 로지스틱 회귀를 함께 이용하여 뉴스 부적합 문단을 검출한다. 본 시스템에서는 로지스틱 회귀를 이용하여 문단의 카테고리를 분류하여 본문의 카테고리 분포도를 계산하고 Word2Vec을 이용하여 문단간의 유사도를 계산한 결과에 가중치를 부여하여 부적합 문단을 검출한다.

  • PDF

Search Resulted News Summarization using Word Discriminability (단어 분별도에 기반한 뉴스 검색 문서 요약)

  • Lee, Sang-Keon;Lee, Hye-Min;Kim, Gi-Ryeong;Seo, Duc-Ho;Lee, Hyun Ah
    • Annual Conference on Human and Language Technology
    • /
    • 2014.10a
    • /
    • pp.175-178
    • /
    • 2014
  • 다양한 언론사로부터 기사를 제공받아 서비스하는 인터넷 포털의 뉴스에서는 수많은 중복 기사가 실시간으로 등록된다. 이로 인하여 인터넷 포털에서 관심 있는 주제의 기사를 검색하여 찾아보려는 경우 검색키워드를 포함한 기사의 수가 지나치게 많아 원하는 정보를 적절하게 얻기 어렵다. 본 논문에서는 이러한 문제점을 해결하기 위해서 검색 기사 중 유사한 문서를 군집화하고 군집에 대한 다중문서요약을 사용자에게 제시하여 검색된 기사를 효율적으로 활용할 수 있는 방법을 제시한다. 다중문서 요약에서는 뉴스 기사에 적합한 단어 가중치인 분별도(discriminability)를 제안하여 사용하여 군집화된 기사로부터 유사 문장을 군집한다. 시스템에서는 군집된 기사의 대표 문장 군집에서 대표 문장, 즉 키워드에 대한 주제별 기사의 요약문을 결과로 제시하여, 효율적인 뉴스 검색을 지원한다.

  • PDF

Korean Morphological Analysis Algorithms for Automatic Indexing (자동색인을 위한 한국어 형태소 분석 알고리즘)

  • Lee, Young-Joo
    • Annual Conference on Human and Language Technology
    • /
    • 1989.10a
    • /
    • pp.240-246
    • /
    • 1989
  • 자동색인이라 함은 기존의 수작업에 의한 색인어 선정 대신 컴퓨터에 의해서 자동화하는 것을 말한다. 한국어는 색인어가 될 수 있는 어근에 조사 및 어미가 붙어서 한 어절을 이루는 언어학 적인 특성을 갖고 있다. 지금까지는 어근을 분리하기 위해 어근에 대한 사전을 구축하고 이를 Top-down 방법에 의해 처리하는 것이 통례였다. 그러나 이러한 방법은 외래어나 고유명사 등 새로 발생하는 어휘가 많은, 뉴스 원고와 같은 보도자료에는 쉽게 적용할 수가 없으며, 자연어를 다루는 타 분야에서도 미등록어에 대한 처리 방안이 시급한 실정이다. 본 논문은 어휘사전 없이 조사 및 어미의 생성 규칙을 이용한 Bottom-up 방식으로 처리하여 후보 색인어를 추론하고, 어절 상호간의 관계를 밝히는 구문분석을 통하여 이를 확정하는 알고리즘을 제안하였다.

  • PDF

Verification of Transliteration Pairs Using Distance LSTM-CNN with Layer Normalization (Distance LSTM-CNN with Layer Normalization을 이용한 음차 표기 대역 쌍 판별)

  • Lee, Changsu;Cheon, Juryong;Kim, Joogeun;Kim, Taeil;Kang, Inho
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.76-81
    • /
    • 2017
  • 외국어로 구성된 용어를 발음에 기반하여 자국의 언어로 표기하는 것을 음차 표기라 한다. 국가 간의 경계가 허물어짐에 따라, 외국어에 기원을 두는 용어를 설명하기 위해 뉴스 등 다양한 웹 문서에서는 동일한 발음을 가지는 외국어 표기와 한국어 표기를 혼용하여 사용하고 있다. 이에 좋은 검색 결과를 가져오기 위해서는 외국어 표기와 더불어 사람들이 많이 사용하는 다양한 음차 표기를 함께 검색에 활용하는 것이 중요하다. 음차 표기 모델과 음차 표기 대역 쌍 추출을 통해 음차 표현을 생성하는 기존 방법 대신, 본 논문에서는 신뢰할 수 있는 다양한 음차 표현을 찾기 위해 문서에서 음차 표기 후보를 찾고, 이 음차 표기 후보가 정확한 표기인지 판별하는 방식을 제안한다. 다양한 딥러닝 모델을 비교, 검토하여 최종적으로 음차 표기 대역 쌍 판별에 특화된 모델인 Distance LSTM-CNN 모델을 제안하며, 제안하는 모델의 Batch Size 영향을 줄이고 학습 시 수렴 속도 개선을 위해 Layer Normalization을 적용하는 방법을 보인다.

  • PDF