• Title/Summary/Keyword: 한국어 뉴스

Search Result 115, Processing Time 0.027 seconds

Chinese and Korean Cross Lingual News Detection in Twitter (트위터에서 이슈가 되고 있는 중국어-한국어 교차언어 뉴스 탐지)

  • Zhao, Shengnan;Tsolmon, Bayar;Lee, Kyung-Soon;Lee, Yong-Seok
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.658-661
    • /
    • 2012
  • 국제적으로 이슈가 되고있는 사건들의 뉴스는 보도당국의 입장차이에 따라 동일 이슈에 대한 관점의 차이를 나타낸다. 교차언어 연구에서는 번역하는 과정이 중요하다. 본 논문에서는 중-한 어휘번역에서 발생하는 오류 및 모호성을 해결하기 위해 키워드를 중심으로 문맥 어휘를 이용해서 번역한 후 번역결과에서 빈도가 높은 한국어 어휘를 선택하는 방법을 제안한다. 제안 방법의 유효성을 검증하기 위해 소셜 이슈 3 개에 대한 트윗 데이터에서 실험하여 추출된 중-한 이슈 뉴스 결과에서의 정확도 85.8%의 성능을 보였다. 실험을 통해 제안 방법이 중-한 교차언어 트위터 데이터에서 동일한 이슈와 관련된 뉴스를 찾는데 효과적인 방법임을 알 수 있다.

Detection of sexuality and violence in Korean news article title based on KoBERT mode (KoBERT 모델 기반 한국어 뉴스 기사 제목 선정성 및 폭력성 검출)

  • Min-Ji Kim;Hwan-Do Kim;Ji-Min Bong;Dae-Hwan Kim
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.570-571
    • /
    • 2023
  • 최근 선정적이고 폭력적인 뉴스 기사 제목의 여과 없는 노출로 인하여 유해한 언어 접촉이 빈번히 이루어지고 있다. 자극적인 단어에 지속적으로 노출되는 것은 인지 능력에 부정적 영향을 주는 것으로 알려져 있다. 따라서 이를 사전에 판별하여 정보를 수용하는 것이 필요하다. 본 논문에서는 KoBERT를 기반으로 한국어 뉴스 기사 제목에서 선정성과 폭력성을 검출하고자 한다. 학습을 위한 뉴스 기사 제목들은 인터넷에서 무작위로 총 9,500개의 데이터를 크롤링 하여 수집하였고, 모델의 말단에 NLNet을 추가하여 문장 전체의 관계를 학습했다. 그 결과 선정성 및 폭력성을 약 89%의 정확도로 검출하였다.

The Mediating Role of Traditional News Media and the News Web in the Political Socialization of Korean Immigrants to the Host Society: Predicting Political Knowledge, Interest, and Participation (전통 뉴스 매체와 뉴스 웹 이용이 이민자들의 주류 정치사회화에 미치는 매개적 역할)

  • Lee, Hyo-Seong
    • Korean journal of communication and information
    • /
    • v.22
    • /
    • pp.211-247
    • /
    • 2003
  • This study explored how Korean immigrants education, length of stay and English fluency affect their political socialization, mediated through traditional news media and the news Web use. Political socialization included political knowledge, interest, and participation. The media usage patterns included U.S. news media, U.S. news Web, Korean news Web, and Korean news Media use by Korean immigrants in the United State. This study found as follows. First, education, length of stay, and English fluency indirectly increased political socialization(political knowledge, interest, and participation) through their relationship with U.S. news media use. Second, U.S. news Web played a potentially important role in Korean immigrants' political socialization by increasing their political interest. Third, Korean news media partly contributed to Korean immigrants' political socialization by increasing their political interest. Fourth, Korean news Web use did not contribute to Korean immigrants' political socialization in terms of political knowledge, interest, and participation at all. In conclusion, this study found that traditional news media's role was more important than news Web's one in the process of immigrants' political socialization to the host society.

  • PDF

Detecting Improper Sentences in a News Article Using Text Mining (텍스트 마이닝을 이용한 기사 내 부적합 문단 검출 시스템)

  • Kim, Kyu-Wan;Sin, Hyun-Ju;Kim, Seon-Jin;Lee, Hyun Ah
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.294-297
    • /
    • 2017
  • SNS와 스마트기기의 발전으로 온라인을 통한 뉴스 배포가 용이해지면서 악의적으로 조작된 뉴스가 급속도로 생성되어 확산되고 있다. 뉴스 조작은 다양한 형태로 이루어지는데, 이 중에서 정상적인 기사 내에 광고나 낚시성 내용을 포함시켜 독자가 의도하지 않은 정보에 노출되게 하는 형태는 독자가 해당 내용을 진짜 뉴스로 받아들이기 쉽다. 본 논문에서는 뉴스 기사 내에 포함된 문단 중에서 부적합한 문단이 포함 되었는지를 판정하기 위한 방법을 제안한다. 제안하는 방식에서는 자연어 처리에 유용한 Convolutional Neural Network(CNN)모델 중 Word2Vec과 tf-idf 알고리즘, 로지스틱 회귀를 함께 이용하여 뉴스 부적합 문단을 검출한다. 본 시스템에서는 로지스틱 회귀를 이용하여 문단의 카테고리를 분류하여 본문의 카테고리 분포도를 계산하고 Word2Vec을 이용하여 문단간의 유사도를 계산한 결과에 가중치를 부여하여 부적합 문단을 검출한다.

  • PDF

Korean Lip Reading System Using MobileNet (MobileNet을 이용한 한국어 입모양 인식 시스템)

  • Won-Jong Lee;Joo-Ah Kim;Seo-Won Son;Dong Ho Kim
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.211-213
    • /
    • 2022
  • Lip Reading(독순술(讀脣術)) 이란 입술의 움직임을 보고 상대방이 무슨 말을 하는지 알아내는 기술이다. 본 논문에서는 MBC, SBS 뉴스 클로징 영상에서 쓰이는 문장 10개를 데이터로 사용하고 CNN(Convolutional Neural Network) 아키텍처 중 모바일 기기에서 동작을 목표로 한 MobileNet을 모델로 이용하여 발화자의 입모양을 통해 문장 인식 연구를 진행한 결과를 제시한다. 본 연구는 MobileNet과 LSTM을 활용하여 한국어 입모양을 인식하는데 목적이 있다. 본 연구에서는 뉴스 클로징 영상을 프레임 단위로 잘라 실험 문장 10개를 수집하여 데이터셋(Dataset)을 만들고 발화한 입력 영상으로부터 입술 인식과 검출을 한 후, 전처리 과정을 수행한다. 이후 MobileNet과 LSTM을 이용하여 뉴스 클로징 문장을 발화하는 입모양을 학습 시킨 후 정확도를 알아보는 실험을 진행하였다.

  • PDF

Chunking Annotation Corpus Construction for Keyword Extraction in News Domain (뉴스 기사 키워드 추출을 위한 구묶음 주석 말뭉치 구축)

  • Kim, Tae-Young;Kim, Jeong Ah;Kim, Bo Hui;Oh, Hyo Jung
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.595-597
    • /
    • 2020
  • 빅데이터 시대에서 대용량 문서의 의미를 자동으로 파악하기 위해서는 문서 내에서 주제 및 내용을 포괄하는 핵심 단어가 키워드 단위로 추출되어야 한다. 문서에서 키워드가 될 수 있는 단위는 복합명사를 포함한 단어가 될 수도, 그 이상의 묶음이 될 수도 있다. 한국어는 언어적 특성상 구묶음 개념이 적용되는 데, 이를 통해 주요 키워드가 될 수 있는 말덩이 추출이 가능하다. 따라서 본 연구에서는 문서에서 단어뿐만 아니라 다양한 단위의 키워드 묶음을 태깅하는 가이드라인 정의를 비롯해 태깅도구를 활용한 코퍼스 구축 방법론을 고도화하고, 그 방법론을 실제로 뉴스 도메인에 적용하여 주석 말뭉치를 구축함으로써 검증하였다. 본 연구의 결과물은 텍스트 문서의 내용을 파악하고 분석이 필요한 모든 텍스트마이닝 관련 기술의 기초 작업으로 활용 가능하다.

  • PDF

Fake news detection via news elements (요소 정보 활용을 통한 가짜 뉴스 탐지)

  • Han, Sangdo;Lee, Gary Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.588-590
    • /
    • 2020
  • 본 연구에서는 가짜 뉴스 탐지를 위한 데이터를 구축하고, 내용 기반의 탐지를 위한 시스템을 제안하였으며, 뉴스의 각 요소 정보가 탐지 성능에 미치는 영향을 확인하였다. 이는 기존의 내용 기반 가짜 뉴스 탐지 방법론들의 단점을 보완할 뿐 아니라 뉴스의 요소 정보가 진위 판별에 미치는 영향을 확인하기 위함이었다. 이를 위해 직접 구축한 뉴스 데이터의 제목과 본문을 따로 인코딩하여 판별하였고, 각 요소를 배제한 실험을 통해 뉴스 제목이 가장 중요한 요소 정보임을 확인하였다. 결과적으로 자극적인 제목으로 이목을 끌려는 가짜 뉴스의 속성을 정량적으로 확인할 수 있었다.

  • PDF

Measurement of Political Polarization in Korean Language Model by Quantitative Indicator (한국어 언어 모델의 정치 편향성 검증 및 정량적 지표 제안)

  • Jeongwook Kim;Gyeongmin Kim;Imatitikua Danielle Aiyanyo;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.16-21
    • /
    • 2022
  • 사전학습 말뭉치는 위키백과 문서 뿐만 아니라 인터넷 커뮤니티의 텍스트 데이터를 포함한다. 이는 언어적 관념 및 사회적 편향된 정보를 포함하므로 사전학습된 언어 모델과 파인튜닝한 언어 모델은 편향성을 내포한다. 이에 따라 언어 모델의 중립성을 평가할 수 있는 지표의 필요성이 대두되었으나, 아직까지 언어 인공지능 모델의 정치적 중립성에 대해 정량적으로 평가할 수 있는 척도는 존재하지 않는다. 본 연구에서는 언어 모델의 정치적 편향도를 정량적으로 평가할 수 있는 지표를 제시하고 한국어 언어 모델에 대해 평가를 수행한다. 실험 결과, 위키피디아로 학습된 언어 모델이 가장 정치 중립적인 경향성을 나타내었고, 뉴스 댓글과 소셜 리뷰 데이터로 학습된 언어 모델의 경우 정치 보수적, 그리고 뉴스 기사를 기반으로 학습된 언어 모델에서 정치 진보적인 경향성을 나타냈다. 또한, 본 논문에서 제안하는 평가 방법의 안정성 검증은 각 언어 모델의 정치적 편향 평가 결과가 일관됨을 입증한다.

  • PDF

Issue Word Extraction Using Chi-square Statistics (카이제곱 통계량을 이용한 이슈 단어 추출)

  • Shin, Junsoo
    • Annual Conference on Human and Language Technology
    • /
    • 2014.10a
    • /
    • pp.225-227
    • /
    • 2014
  • 최근 온라인 뉴스는 대중의 관심사 및 트렌드에 따라서 다양한 종류의 기사들이 작성된다. 이러한 관심사 및 트렌드는 시간의 흐름에 따라 계속 변한다. 본 논문에서는 온라인 뉴스의 기사 제목을 이용하여 시간에 따라 변하는 관심사 및 트렌드와 관련된 단어를 추출하는 방법을 제안한다. 특정 기간 별 출현하는 뉴스들을 하나의 카테고리로 가정하고 자질 선택 방법에서 널리 사용되는 카이제곱 통계량을 이용하여 각 카테고리의 주요 단어를 추출한다. 실험 결과 특정 기간 별 관심사 및 트렌드와 관련된 단어들이 출현하는 것을 확인하였다.

  • PDF