• Title/Summary/Keyword: 한계 자율 주행

Search Result 80, Processing Time 0.02 seconds

Machine Learning Based MMS Point Cloud Semantic Segmentation (머신러닝 기반 MMS Point Cloud 의미론적 분할)

  • Bae, Jaegu;Seo, Dongju;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.939-951
    • /
    • 2022
  • The most important factor in designing autonomous driving systems is to recognize the exact location of the vehicle within the surrounding environment. To date, various sensors and navigation systems have been used for autonomous driving systems; however, all have limitations. Therefore, the need for high-definition (HD) maps that provide high-precision infrastructure information for safe and convenient autonomous driving is increasing. HD maps are drawn using three-dimensional point cloud data acquired through a mobile mapping system (MMS). However, this process requires manual work due to the large numbers of points and drawing layers, increasing the cost and effort associated with HD mapping. The objective of this study was to improve the efficiency of HD mapping by segmenting semantic information in an MMS point cloud into six classes: roads, curbs, sidewalks, medians, lanes, and other elements. Segmentation was performed using various machine learning techniques including random forest (RF), support vector machine (SVM), k-nearest neighbor (KNN), and gradient-boosting machine (GBM), and 11 variables including geometry, color, intensity, and other road design features. MMS point cloud data for a 130-m section of a five-lane road near Minam Station in Busan, were used to evaluate the segmentation models; the average F1 scores of the models were 95.43% for RF, 92.1% for SVM, 91.05% for GBM, and 82.63% for KNN. The RF model showed the best segmentation performance, with F1 scores of 99.3%, 95.5%, 94.5%, 93.5%, and 90.1% for roads, sidewalks, curbs, medians, and lanes, respectively. The variable importance results of the RF model showed high mean decrease accuracy and mean decrease gini for XY dist. and Z dist. variables related to road design, respectively. Thus, variables related to road design contributed significantly to the segmentation of semantic information. The results of this study demonstrate the applicability of segmentation of MMS point cloud data based on machine learning, and will help to reduce the cost and effort associated with HD mapping.

Research on Channel-Wise Preprocessing for Enhanced Infrared Object Detection

  • Jae-Uk Kim;Byung-In Choi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.11
    • /
    • pp.153-161
    • /
    • 2024
  • In this paper, we address the limitation of single-channel infrared (IR) images, which are difficult to directly apply to RGB-based detection models. Previously, a single channel was often replicated into three channels; however, this approach may limit detection performance due to information redundancy. To overcome this limitation, we propose a method that replicates the single-channel IR image into three channels, with each channel processed using different preprocessing techniques, such as CLAHE (Contrast Limited Adaptive Histogram Equalization), Laplacian Filter, and Top-hat transform, to improve detection performance. In this study, we utilized the RT-DETRv2 detection model and the Anti-UAV300 dataset, using IR images sampled at 10-frame intervals for our experiments. By evaluating the effects of each preprocessing technique and deriving the optimal configuration, our method achieved a 2.2% improvement in mean Average Precision (mAP) over conventional methods. This confirms that our method enhances performance over simple replication, presenting a novel approach to improving object detection performance in IR imaging, with promising applications across various fields, particularly in disaster situations where infrared cameras are utilized, as well as in nighttime surveillance and reconnaissance.

Wireless LAN-based Vehicle Location Estimation in GPS Shading Environment (GPS 음영 환경에서 무선랜 기반 차량 위치 추정 연구)

  • Lee, Donghun;Min, Kyungin;Kim, Jungha
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.1
    • /
    • pp.94-106
    • /
    • 2020
  • Recently, the radio navigation method utilizing the GPS(Global Positioning System) satellite information is widely used as the method to measure the position of objects. As GPS applications become wider and fields based on various positioning information emerge, new methods for achieving higher accuracy are required. In the case of autonomous vehicles, the INS(Inertial Navigation System) using the IMU(Inertial Measurement Unit), and the DR(Dead Reckoning) algorithm using the in-vehicle sensor, are used for the purpose of preventing degradation of accuracy of the GPS and to measure the position in the shadow area. However, these positioning methods have many elements of problems due not only to the existence of various shaded areas such as building areas that are continually enlarged, tunnels, underground parking lots and but also to the limitations of accumulation-based location estimation methods that increase in error over time. In this paper, an efficient positioning method in a large underground parking space using Fingerprint method is proposed by placing the AP(Access Points) and directional antennas in the form of four anchors using WLAN, a popular means of wireless communication, for positioning the vehicle in the GPS shadow area. The proposed method is proved to be able to produce unchanged positioning results even in an environment where parked vehicles are moved as time passes.

High Quality Video Streaming System in Ultra-Low Latency over 5G-MEC (5G-MEC 기반 초저지연 고화질 영상 전송 시스템)

  • Kim, Jeongseok;Lee, Jaeho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.2
    • /
    • pp.29-38
    • /
    • 2021
  • The Internet including mobile networks is developing to overcoming the limitation of physical distance and providing or acquiring information from remote locations. However, the systems that use video as primary information require higher bandwidth for recognizing the situation in remote places more accurately through high-quality video as well as lower latency for faster interaction between devices and users. The emergence of the 5th generation mobile network provides features such as high bandwidth and precise location recognition that were not experienced in previous-generation technologies. In addition, the Mobile Edge Computing that minimizes network latency in the mobile network requires a change in the traditional system architecture that was composed of the existing smart device and high availability server system. However, even with 5G and MEC, since there is a limit to overcome the mobile network state fluctuations only by enhancing the network infrastructure, this study proposes a high-definition video streaming system in ultra-low latency based on the SRT protocol that provides Forward Error Correction and Fast Retransmission. The proposed system shows how to deploy software components that are developed in consideration of the nature of 5G and MEC to achieve sub-1 second latency for 4K real-time video streaming. In the last of this paper, we analyze the most significant factor in the entire video transmission process to achieve the lowest possible latency.

A Study on Estimation of Road and Transportation Facility Improvement Direction Using Random Forest (랜덤 포레스트를 활용한 도로 및 교통시설 개선방향 추정 연구)

  • Hwang, Jae-seong;Kim, Do-kyeong;Kim, Nam-sun;Lee, Choul-ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.37-46
    • /
    • 2021
  • Government agencies, such as police and local governments, strive to prevent traffic hazards and create a comfortable road environment by pormoting transportation and road facilities. To this end, roads and transportation facilities are enhanced and adjusted, and improvement projects in areas with frequent traffic accidents are carried out. Usually, improvement projects in areas with frequent traffic accidents vary by projects and region. Moreover, these projects are carried out under the supervision of a person in charge and related parties. Hence, civil complaints and subjectivity are reflected in deriving priorities for the improvement projects, limiting the efficiency of the project. To this end, a study was conducted to estimate the direction of improvement of the project target site. This study comprehensively considered road, traffic, and accident conditions of representative projects with high effectiveness in handling traffic accidents. The results of the study state that the accuracy of estimating the improvement project was around 88%. In addition, the study found that there was a strong relationship between traffic volume, accident rate, and accident severity in estimating the improvement direction.

Road Extraction from Images Using Semantic Segmentation Algorithm (영상 기반 Semantic Segmentation 알고리즘을 이용한 도로 추출)

  • Oh, Haeng Yeol;Jeon, Seung Bae;Kim, Geon;Jeong, Myeong-Hun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.239-247
    • /
    • 2022
  • Cities are becoming more complex due to rapid industrialization and population growth in modern times. In particular, urban areas are rapidly changing due to housing site development, reconstruction, and demolition. Thus accurate road information is necessary for various purposes, such as High Definition Map for autonomous car driving. In the case of the Republic of Korea, accurate spatial information can be generated by making a map through the existing map production process. However, targeting a large area is limited due to time and money. Road, one of the map elements, is a hub and essential means of transportation that provides many different resources for human civilization. Therefore, it is essential to update road information accurately and quickly. This study uses Semantic Segmentation algorithms Such as LinkNet, D-LinkNet, and NL-LinkNet to extract roads from drone images and then apply hyperparameter optimization to models with the highest performance. As a result, the LinkNet model using pre-trained ResNet-34 as the encoder achieved 85.125 mIoU. Subsequent studies should focus on comparing the results of this study with those of studies using state-of-the-art object detection algorithms or semi-supervised learning-based Semantic Segmentation techniques. The results of this study can be applied to improve the speed of the existing map update process.

QRAS-based Algorithm for Omnidirectional Sound Source Determination Without Blind Spots (사각영역이 없는 전방향 음원인식을 위한 QRAS 기반의 알고리즘)

  • Kim, Youngeon;Park, Gooman
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.91-103
    • /
    • 2022
  • Determination of sound source characteristics such as: sound volume, direction and distance to the source is one of the important techniques for unmanned systems like autonomous vehicles, robot systems and AI speakers. There are multiple methods of determining the direction and distance to the sound source, e.g., using a radar, a rider, an ultrasonic wave and a RF signal with a sound. These methods require the transmission of signals and cannot accurately identify sound sources generated in the obstructed region due to obstacles. In this paper, we have implemented and evaluated a method of detecting and identifying the sound in the audible frequency band by a method of recognizing the volume, direction, and distance to the sound source that is generated in the periphery including the invisible region. A cross-shaped based sound source recognition algorithm, which is mainly used for identifying a sound source, can measure the volume and locate the direction of the sound source, but the method has a problem with "blind spots". In addition, a serious limitation for this type of algorithm is lack of capability to determine the distance to the sound source. In order to overcome the limitations of this existing method, we propose a QRAS-based algorithm that uses rectangular-shaped technology. This method can determine the volume, direction, and distance to the sound source, which is an improvement over the cross-shaped based algorithm. The QRAS-based algorithm for the OSSD uses 6 AITDs derived from four microphones which are deployed in a rectangular-shaped configuration. The QRAS-based algorithm can solve existing problems of the cross-shaped based algorithms like blind spots, and it can determine the distance to the sound source. Experiments have demonstrated that the proposed QRAS-based algorithm for OSSD can reliably determine sound volume along with direction and distance to the sound source, which avoiding blind spots.

Characteristic Analysis on Urban Road Networks Using Various Path Models (다양한 경로 모형을 이용한 도시 도로망의 특성 분석)

  • Bee Geum;Hwan-Gue Cho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.6
    • /
    • pp.269-277
    • /
    • 2024
  • With the advancement of modern IT technologies, the operation of autonomous vehicles is becoming a reality, and route planning is essential for this. Generally, route planning involves proposing the shortest path to minimize travel distance and the quickest path to minimize travel time. However, the quality of these routes depends on the topological characteristics of the road network graph. If the connectivity structure of the road network is not rational, there are limits to the performance improvement that routing algorithms can achieve. Real drivers consider psychological factors such as the number of turns, surrounding environment, traffic congestion, and road quality when choosing routes, and they particularly prefer routes with fewer turns. This paper introduces a simple path algorithm that seeks routes with the fewest turns, in addition to the traditional shortest distance and quickest time routes, to evaluate the characteristics of road networks. Using this simple path algorithm, we compare and evaluate the connectivity characteristics of road networks in 20 major cities worldwide. By analyzing these road network characteristics, we can identify the strengths and weaknesses of urban road networks and develop more efficient and safer route planning algorithms. This paper comprehensively examines the quality of road networks and the efficiency of route planning by analyzing and comparing the road network characteristics of each city using the proposed simple path algorithm.

A Fusion Sensor System for Efficient Road Surface Monitorinq on UGV (UGV에서 효율적인 노면 모니터링을 위한 퓨전 센서 시스템 )

  • Seonghwan Ryu;Seoyeon Kim;Jiwoo Shin;Taesik Kim;Jinman Jung
    • Smart Media Journal
    • /
    • v.13 no.3
    • /
    • pp.18-26
    • /
    • 2024
  • Road surface monitoring is essential for maintaining road environment safety through managing risk factors like rutting and crack detection. Using autonomous driving-based UGVs with high-performance 2D laser sensors enables more precise measurements. However, the increased energy consumption of these sensors is limited by constrained battery capacity. In this paper, we propose a fusion sensor system for efficient surface monitoring with UGVs. The proposed system combines color information from cameras and depth information from line laser sensors to accurately detect surface displacement. Furthermore, a dynamic sampling algorithm is applied to control the scanning frequency of line laser sensors based on the detection status of monitoring targets using camera sensors, reducing unnecessary energy consumption. A power consumption model of the fusion sensor system analyzes its energy efficiency considering various crack distributions and sensor characteristics in different mission environments. Performance analysis demonstrates that setting the power consumption of the line laser sensor to twice that of the saving state when in the active state increases power consumption efficiency by 13.3% compared to fixed sampling under the condition of λ=10, µ=10.

Effectiveness Analysis and Application of Phosphorescent Pavement Markings for Improving Visibility (축광노면표시 시인성 개선에 따른 경제성 분석 및 적용방안)

  • Yi, Yongju;Lee, Kyujin;Kim, Sangtae;Choi, Keechoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.815-825
    • /
    • 2017
  • Visibility of lane marking is impaired at night or in the rain, which thereby threatens traffic safety. Recently, various studies and technologies have been developed to improve lane marking visibility, such as the extension of lane marking life expectancy (up to 1.5 times), improvement of lane marking equipment productivity, improvement of lane marking visibility by applying phosphorescent material mixed paint. Cost-benefit analysis was performed with considering various benefit items that can be expected. About 45% of traffic accidents would be prevented by improving lane marking visibility. Additionally, accident reduction benefit and traffic congestion reduction benefit were calculated as much as 246 billion KRW per year and 12 billion KRW per year, respectively, by reducing repaint cycle due to enhanced durability. 45 billion KRW per year is expected to reduced with improved lane detection performance of autonomous vehicle. Meanwhile, total increased cost when introducing phosphorescent material mixed paint to 91,195km of nationwide road is identified as 1922 billion KRW per year. However, economic feasibility could not be secured with 0.16 of cost-benefit ratio when applied to the road network as a whole. In case of "Accident Hot Spot" analyzing section window (400m), one or more fatality or two or more injured (one or more injured in case of less than 2 lanes per direction) per year were caused by pavement marking related accident, economic feasibility was secured. In detail, 3.91 of cost-benefit ratio is estimated with comparison of the installation cost for 5,697 of accident hot spot and accident reduction benefit. Some limitations and future research agenda have also been discussed.