• Title/Summary/Keyword: 학회정보 분류

Search Result 11,399, Processing Time 0.048 seconds

A study on the Classification Schemes of Internet Resources for Industry (산업 분야 인터넷 자원의 분류체계에 관한 연구)

  • 한상길
    • Journal of the Korean Society for information Management
    • /
    • v.18 no.3
    • /
    • pp.285-309
    • /
    • 2001
  • The industry information grows faster than any other information resources in the Internet age. Unfortunately, however, there is no consensus on the standard of the classification among the information providers of the industry fields. This may a problematic issue not only in building a continuous and systematic development of the industry information, but also in the use of the information among the users. This study aims to propose a well-structured and/or an efficient classification scheme for the industry information to help the users with easy to retrieve the Internet resources. To do this, we analyzed the subject classification scheme of the domestic industry information on the web sites, which is largely adopted the \"Korean Standard for the Industry Classification\". In addition, we suggested the principle of the subject classification and their hierarchial structure derived from the analysis of the knowledge and document classification scheme. As a result, it was suggested an optimized industry classification scheme based on the analysis of the validity test of classification item measured by the quantitative analysis of the industry information, which it currently accessible through the Internet. Internet.

  • PDF

User Group Classification Scheme for Efficient Social Search on the Facebook (Facebook에서의 효과적인 소셜 검색을 위한 사용자 그룹 분류 기법)

  • Rew, Jehyeok;Choi, Young-Hwan;Hwang, Eenjun
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.1431-1434
    • /
    • 2013
  • 최근 소셜 네트워크 서비스 사용자의 폭발적인 증가 추세와 더불어 사용자 기반의 정보 공유 패러다임이 확산됨에 따라 효과적인 정보 공유를 위한 검색 방법 및 정보 분류의 필요성이 대두되고 있다. 소셜 네트워크 서비스는 관계도 탐색, 유사한 관심사의 사람들과 정보 공유, 추천시스템 등의 주요 서비스를 사용자 기반으로 구축하는 방향으로 연구가 진행되고 있으나 낮은 정보의 신뢰성으로 인해 지능적인 검색 및 정보 분류에 한계가 있었다. 본 논문에서는 대표적인 소셜 네트워크 서비스인 Facebook 을 기반으로, 낮은 정보의 신뢰성을 높이고 사용자의 소셜 검색 만족도를 높일 수 있는 사용자 그룹 분류 기법을 제안한다. 이를 위해 Facebook 사용자의 메타데이터를 수집하고 관계로 맺어진 사용자들간의 친밀도를 메타데이터 기반으로 계산하며 유사한 관심 정보에 따라 분류하고 효과적으로 사용자들을 그룹화한다. 마지막으로 실험을 통해 관계로 이루어진 사용자 친밀도와 그룹 분류가 효과적으로 수행되었음을 보인다.

Korean Noun Clustering Via Incremental Conceptual Clustering (개념분류기법을 적용한 한국에 명사분류)

  • Jung, Yeon-Su;Cho, Jeong-Mi;Kim, Gil-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 1995.10a
    • /
    • pp.50-55
    • /
    • 1995
  • 많은 언어관계들이 의미적으로 유사한 단어들의 집합에 적응된다. 그러므로 단어들을 의미가 비슷한 것들의 집합으로 분류하는 것은 아주 유용한 일이다. 본 논문에서는 말뭉치로부터의 동사와 명사의 분포정보를 이용하여 명사들을 분류하고자 한다. 한국어에서는 명사마다 문장에서 그 명사를 특정한 격으로 사용할 수 있는 동사들이 제한되어 있다. 그러므로 본 논문에서는 말뭉치에서 나타나는 명사와 그 명사를 특정한 격으로 사용하는 동사들의 분포정보로부터 명사들을 분류하는 방법을 제시한다. 형태소 해석된 50만 단어 말뭉치에서 가장 빈도수가 높은 명사 85단어를 대상으로 실험하였다. 명사와 동사의 구문정보를 사용하므로 의미적으로는 다르지만 쓰임이 비슷한 단어들도 같은 부류로 분류되었다. 의미적으로 애매성을 가지는 명사들의 경우도 실험결과를 나쁘게하는 요인이 되었다. 그리고, 좀더 좋은 결과를 얻기 위해서는 동사들도 의미가 유사한 것들로 분류한 후, 명사와 동사의 분포정보가 아닌 명사와 동사들의 집합의 분포정보를 이용하는 것도 종은 방법이 될 것이다.

  • PDF

Classification of Cancer-related Gene Expression Data Using Neural Network Classifiers (신경망 분류기를 이용한 암 관련 유전자 발현정보를 분류)

  • 권영준;류중원;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.295-297
    • /
    • 2001
  • 최근 생물 유전자 정보를 효과적으로 분석하기 위한 적절한 도구의 필요성이 대두되고 있다. 본 논문에서는 백혈병 환자의 골수로부터 얻어낸 DNA Microarray 유전 정보를 분류하여 환자가 가지고 있는 암의 종류를 예측하기 위한 최적의 특징추출방법과 분류 방법을 찾고자 한다. 이를 위해 피어슨 상관관계, 유클리디안 거리, 코사인 계수, 스피어맨 상관관계, 정보 이득, 상호 정보, 신호 대잡음비의 7가지 특징 추출 방법을 사용하였으며, 역전과 신경망, 의사결정 트리, 구조 적응형 자기구성 지도, $textsc{k}$-최근접 이웃 등 가지의 기계학습 분류기를 이용하여 분류 실험을 하였다. 실험결과, 피어슨 상관관계와 역전파 신경망을 이용한 분류 방법이 97.1%의 인식률을 보임을 알 수 있었다.

  • PDF

Sequential Sentence Classification Model based on ELECTRA (ELECTRA 기반 순차적 문장 분류 모델)

  • Choi, Gi-Hyeon;Kim, Hark-Soo;Yang, Seong-Yeong;Jeong, Jae-Hong;Lim, Tae-Gu;Kim, Jong-Hoon;Park, Chan-Kyu
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.327-330
    • /
    • 2020
  • 순차적 문장 분류는 여러 문장들을 입력으로 받아 각 문장들에 대하여 사전 정의된 라벨을 할당하는 작업을 말한다. 일반적인 문장 분류와 대조적으로 기준 문장과 주변 문장 사이의 문맥 정보가 분류에 큰 영향을 준다. 따라서 입력 문장들 사이의 문맥 정보를 반영하는 과정이 필수적이다. 최근, 사전 학습 기반 언어 모델의 등장 이후 여러 자연 언어 처리 작업에서 큰 성능 향상이 있었다. 앞서 언급하였던 순차적 문장 분류 작업의 특성상 문맥 정보를 반영한 언어 표현을 생성하는 사전 학습 기반 언어 모델은 해당 작업에 매우 적합하다는 가설을 바탕으로 ELECTRA 기반 순차적 분류 모델을 제안하였다. PUBMED-RCT 데이터 셋을 사용하여 실험한 결과 제안 모델이 93.3%p로 가장 높은 성능을 보였다.

  • PDF

Text Categorization Using Co-Trained Support Vector Machines (Co-Trained Support Vector Machines을 이용한 문서분류)

  • 박성배;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.259-261
    • /
    • 2002
  • 대부분의 자동문서분류 시스템은 문서에 사용된 단어의 분포만 고려하고, 또 하나의 중요한 정보인 통사 정보는 무시한다. 본 논문에서는 통사정보와 어휘정보를 모두 사용함으로써 대규모의 비구조 문서를 분류하는 방법을 제시한다. 이를 위해, 학습 데이터에 대해 독립된 두 개의 관점을 요구하는 일종의 부분 감독 학습 알고리즘인 co-training 알고리즘을 사용한다. 어휘정보와 통사정보가 각각 문서의 독립된 관점이 될 수 있으므로, 이 두 정보와 레이블이 없는 문서를 사용하여 문서 분류의 성능을 높일 수 있다. Reelers-21578 문서집합과 TREC-7 filtering 문서집합에 대한 실험 결과는 제시된 방법의 유효성을 보인다.

  • PDF

A Study on Word Semantic Categories for Natural Language Question Type Classification and Answer Extraction (자연어 질의 유형판별과 응답 추출을 위한 어휘 의미체계에 관한 연구)

  • Yoon Sung-Hee
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.11a
    • /
    • pp.141-144
    • /
    • 2004
  • 질의응답 시스템이 정보검색 시스템과 다른 중요한 점은 질의 처리 과정이며, 자연어 질의 문장에서 사용자의 질의 의도를 파악하여 질의 유형을 분류하는 것이다. 본 논문에서는 질의 주-형을 분류하기 위해 복잡한 분류 규칙이나 대용량의 사전 정보를 이용하지 않고 질의 문장에서 의문사에 해당하는 어휘들을 추출하고 주변에 나타나는 명사들의 의미 정보를 이용하여 세부적인 정답 유형을 결정할 수 있는 질의 유형 분류 방법을 제안한다. 의문사가 생략된 경우의 처리 방법과 동의어 정보와 접미사 정보를 이용하여 질의 유형 분류 성능을 향상시킬 수 있는 방법을 제안한다.

  • PDF

Email Classification using Dynamic Category Hierarchy and Non-negative Matrix Factorization (비음수 행렬 분해와 동적 분류체계를 사용한 이메일 분류)

  • Park, Sun;An, Dong Un
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.35-39
    • /
    • 2009
  • 이메일의 사용증가로 수신 메일을 효율적이면서 정확하게 분류할 필요성이 점차 증가하고 있다. 현재의 이메일 분류는 베이지안, 규칙 기반 등을 이용하여 스팸 메일을 필터링하기 위한 이원 분류가 주를 이루고 있다. 클러스터링을 이용한 다원 분류 방법은 분류의 정확도가 떨어지는 단점이 있다. 본 논문에서는 비음수 행렬 분해(NMF, Non-negative Matrix Factrazation)를 기반으로 한 자동 분류 주제 생성 방법과 동적 분류 체계(DCH, Dynamic Category Hierachy) 방법을 결합한 새로운 이메일 분류 방법을 제안한다. 이 방법은 수신되는 이메일을 자동으로 분류하여 대량의 메일을 효율적으로 관리할 수 있으며, 분류 결과 사용자의 요구사항을 만족하지 못하면 메일을 동적으로 재분류 하여 분류 정확률을 높일 수 있다.

  • PDF

A study on Developmental History of the Knowledge and Library Classification in the Epistemological Subject Viewpoint (인식론적 주제관점에서의 지식과 문헌분류의 전개고)

  • 김옥희;남태우
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 1994.12a
    • /
    • pp.133-136
    • /
    • 1994
  • 문헌분류는 지식분류에 입각하여야 한다는 분류의 제 1원리를 규명하기 위하여 지식의 발전과정을 인식론적 관점에서 규명하였으며. 이를 바탕으로 지식분류가 문헌분류에 어떤 영향력을 미쳤는가를 규명하였다. 주제개념은 주관적 관념론, 객관적 관념론, 실용주의, 유물론으로 구분하여 분석하였다. 분석된 결과에 따라 지식분류가 어떤 인식의 관점에서 전개되어 왔는지를 인도의 베다분류법을 비롯하여 플라톤과 아리스토텔레스의 지식분류에서부터 현재의 머시럼, 브리테니카 3의 분류법에 이르기까지 분석하였다. 또한 이를 토대로 지식분류와 문헌분류의 상보성을 규명하였다.

  • PDF

A Comparative Study on Lexical Classification (용어분류의 비교연구)

  • 백지원;최석두
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2002.08a
    • /
    • pp.19-26
    • /
    • 2002
  • 본 연구의 목적은 용어분류를 그 특성에 따라 유형 구분하고 그 각각의 장단점을 밝힘으로써 앞으로의 용어분류 연구를 위한 기반을 제공하는 것이다. 이를 위해 먼저 용어분류의 개념을 밝히고, 그 목적 및 활용분야를 논하였다. 다음으로 다양한 용어 분류 관련 사례를 그 내·외형적 특성에 따라 크게 유의어 사전류와 분류형 시소러스류의 두 가지 유형으로 나눈 후, 이를 다시 세분하여 그 각각의 특징을 분석하였다. 이 분석을 바탕으로, 특히 색인과 검색 등 정보처리에 필요한 용어분류의 유형과 특성을 논하였다.

  • PDF