• Title/Summary/Keyword: 학회정보 분류

Search Result 11,399, Processing Time 0.038 seconds

Network Flow Classification Based on Maximum Entropy Theory (최대 엔트로피 이론 기반 네트워크 흐름 분류)

  • Kim, Min-Woo;Lee, Tae-Ho;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.143-144
    • /
    • 2019
  • 최대 엔트로피(Maximum Entropy)는 실증적 데이터에서 관찰된 잠재적인 여러 유용한 특징들을 기반으로 최대 엔트로피를 갖는 추정된 분포를 구축하기 위한 접근법이다. 본 논문에서는 네트워크상의 데이터 전송 시 혼잡한 흐름을 효율적으로 분류하기 위해 최대 엔트로피 알고리즘을 기반으로 한 새로운 네트워크 흐름 분류 모델을 제안한다. 제안한 알고리즘이 기존의 방법들 보다 높은 분류 정확도를 나타내는 것을 목표로 네트워크 서비스 시 효율성을 높이고자 한다.

  • PDF

Incremental Early Risk Detection using Dialogue State Tracking for Panic Disorder (대화 상태 추적 모델을 활용한 공황 장애 점진적 조기 위험 검출 시스템)

  • Chaebin Lee;Geunbae Lee
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.497-501
    • /
    • 2022
  • 대화 상태 추적(Dialogue State Tracking)은 특정 목적을 달성하기 위한 대화 시스템인 목적 지향 대화 시스템의 핵심 부분으로, 대화에서 표현된 사용자의 목적을 추출한다. 조기 위험 검출 시스템은 연속적으로 들어오는 정보를 바탕으로 분류 대상인지 아닌지를 판별하며, 정확도 저하를 피하면서 최대한 빠르게 분류하는 것을 목표로 한다. 본 연구에서는 대화 상태 추적 시스템에서 나온 은닉층을 입력으로 하여 실시간으로 공황 장애 여부를 점진적으로 조기 분류하는 시스템과 조기 분류를 위한 새로운 손실 함수를 제안한다. 조기 위험 검출 시스템에 대화 상태인 belief state의 정보를 함께 사용했을 때, 큰 성능 향상을 보였으며 대화 상태가 조기 위험 검출에 필요한 정보를 담고 있음을 확인할 수 있다.

  • PDF

Fashion Search Service Using Transfer Learning (전이 학습을 이용한 패션 스타일 검색 서비스)

  • Lee, Byeong-Jun;Sim, Ju-Yong;Lee, Jun-Yeong;Lee, Songwook
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.432-434
    • /
    • 2022
  • 우리는 전이 학습을 이용하여 원하는 특정 패션 스타일 분류기를 학습하였다. 패션 스타일 검색 결과물을 온라인 쇼핑몰과 연결하는 웹 서비스를 사용자에게 제공한다. 패션 스타일 분류기는 구글에서 이미지 검색을 통해 수집된 데이터를 이용하여 ResNet34[1]에 전이 학습하였다. 학습된 분류 모델을 이용하여 사용자 이미지로부터 패션 스타일을 17가지 클래스로 분류하였고 F1 스코어는 평균 65.5%를 얻었다. 패션 스타일 분류 결과를 네이버 쇼핑몰과 연결하여 사용자가 원하는 패션 상품을 구매할 수 있는 서비스를 제공한다.

Analysis of Author's Journal Papers belonging to Departments in the field of Disaster and Safety at Domestic Universities (국내 대학기관 재난안전분야 학과 소속 저자의 학술지 논문 분석)

  • Kim, Byungkyu;You, Beom-Jong;Shim, Hyoung-Seop
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.169-172
    • /
    • 2022
  • 재난안전 분야의 기술개발 동향을 파악하고 지적 관계를 분석하기 위한 연구에서 신뢰성과 최신성을 겸비한 학술정보를 활용하는 것은 매우 유용하다. 기존의 논문 기반 계량정보분석 연구에서는 관련 분야의 학술지와 키워드를 중심으로 분석 대상 논문을 선별하여 연구재료로 사용하였다. 본 논문에서는 재난안전 분야의 보다 세부적인 연구 특성 파악을 위해 국내 대학기관의 방재 및 안전공학 학과에 소속된 저자들의 논문 정보를 대상으로 기관식별, 학과유형 분류, 재난안전유형 분류. 표준산업분류를 매핑하고 주요 측면별로 분석 연구를 수행하였다. 분석 결과, 재난안전 분야 연구에서 저자소속 기관의 유형 및 지역적 분포, 공저 학과 유형의 구성, 재난안전유형 및 표준산업분류의 현황과 핵심 키워드가 자세히 파악되었다. 연구 결과는 향후 지능형 위기경보 체계 구축을 위한 재난유형별 주요 기관 및 전문가 식별과 추천에 활용이 기대된다.

  • PDF

Research on Multi-facted News Article Classification Models Classifying Subjects, Geographies and Genres (심층 주제, 지역, 장르를 모두 분류할 수 있는 다면적 뉴스 기사 자동 분류 모델 연구)

  • Hyojin Lee;SungPil Choi
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.58 no.3
    • /
    • pp.65-89
    • /
    • 2024
  • This study developed a model to classify news articles into categories of topic, genre, and region using a Korean Pre-trained Language model. To achieve this, a new news article classification system was designed by referring to the classification systems of domestic media outlets. The topic and genre classification models were implemented as hierarchical classification models that link the main categories and subcategories, and their performance was compared with that of an integrated category model. The evaluation results showed that the hierarchical structure classification model had the advantage of providing more precise categorization in ambiguous or overlapping categories compared to the integrated category model. For regional classification of news articles, a model was built to classify into 18 categories, and for regional news articles, the regional characteristics were clearly reflected in the text, resulting in high performance. This study demonstrated the effectiveness of classifying news articles from multiple perspectives-topic, genre, and region-and emphasized the significance of suggesting the potential for a multi-dimensional news article classification service that meets user needs.

A Study on the Classification System for Computerizing Museum Data (박물관자료 전산화를 위한 분류방안에 관한 연구)

  • 정은숙;정동열
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 1994.12a
    • /
    • pp.137-140
    • /
    • 1994
  • 본 연구는 박물관자료의 특성과 관련하여 분류상의 문제점을 이론적으로 고찰하고, 설문조사를 통하여 우리나라 박물관의 자료분류 현황을 분석하였으며, 이러한 분석 결과를 토대로 전산화를 위한 박물관자료의 분류 방안을 설정하였다.

  • PDF

Robust Music Categorization Method using Social Tags (소셜 태그를 이용한 강인한 음악 분류 기법)

  • Lee, Jaesung;Kim, Dae-Won
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.01a
    • /
    • pp.181-182
    • /
    • 2015
  • 음악 검색에 있어 소셜 태그 정보는 사용자로 하여금 음악의 내재적 의미를 빠르게 파악할 수 있도록 한다. 음악의 소셜 태그 정보는 음악 추천 시스템을 활용하는 사용자(청취자)에 의해 점진적으로 완성되기 때문에 초기에 완전한 태그 정보를 수집하는 것은 어렵다. 본 논문에서는 음악의 일부 태그가 누락되어 있는 상황에서 음악 정보 검색을 자동으로 수행할 수 있는 클래스 분류 알고리즘을 제안하고자 한다.

  • PDF

Design and Implementation of Web Search Engine Using Dynamic Category Hierarchy (동적분류체계를 사용한 웹 검색엔진의 설계 및 구현)

  • Park, Sun;Choi, Bum-Gi
    • Annual Conference of KIPS
    • /
    • 2003.05b
    • /
    • pp.747-750
    • /
    • 2003
  • 분류검색 방법은 색인검색 방법과 함께 중요한 요소로서 웹 검색 엔진에서 지원되고 있다. 색인검색 방법에서는 검색결과의 재현율이 높지만 검색결과가 너무 많이 나오기 때문에 원하는 검색결과를 찾아내는 것이 어렵다는 단점이 있다. 또한 능숙한 컴퓨터 사용자는 색인검색을 자주 사용하지만, 컴퓨터에 익숙하지 않은 대부분의 사람들은 분류검색 방법을 사용한다. 이러한 이유 때문에 검색엔진에서 분류검색 방법이 반드시 필요하다. 그러나 분류검색 방법은 찾고자 하는 문서의 해당분류가 애매모호하거나 명확하게 알지 못할 때에는 문서를 찾지 못하는 경우가 빈번히 발생한다. 즉, 검색결과의 정확도는 높으나 재현율이 떨어지는 단점이 있다. 본 논문은 이러한 분류검색에 대한 문제점을 해결하기 위해서 분류와 검색어간의 관계를 퍼지논리를 이용하여 정량적으로 계산하고 이를 바탕으로 분류간의 함의관계를 유도함으로써 동적인 분류체계를 구성하는 새로운 웹 검색엔진을 설계하고 구현하였다. 구현된 검색엔진은 분류간의 함의관계를 유사한 하위분류로서 간주함으로써 분류검색 결과의 재현율을 높일 수 있다.

  • PDF

A Design of Classification System for Military Information Resources on the Internet (군사학 분야 웹 문서 분류체계의 설계)

  • 오동근;황재영;배영활
    • Journal of Korean Library and Information Science Society
    • /
    • v.32 no.2
    • /
    • pp.323-347
    • /
    • 2001
  • This study is to suggest a classification system to classify the military information resources on the internet. In the first part, it compares LCC\`s Class U(military Science) and Class V(Naval Science) with Yahoo! Korea\`s web site classification system(Home/Government/Military). The second part compares the classes of Yahoo! Korea with those of Simmani search engine and Yahoo! US. Based on this comparative analysis, it proposes a classificatory system for the military information resources on the internet.

  • PDF

2-stage Classification Model of vehicles based on CNN Algorithm (CNN 알고리즘 기반 2단계 차종 분류 모델)

  • Kim, Han-Kyum;Ahn, Yoo-Lim;Yoon, Seong-Ho;Lee, Young-Jae;Lee, Young-Heung;Lee, Weon-June;Kim, Hyun-Min;Kim, Young-Ok
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.791-794
    • /
    • 2021
  • 범죄차량 판독 시스템, 지능화된 CCTV 등 차량과 관련된 시각지능에 관한 연구가 큰 관심을 받고 있다. 이 중 차량 분류 기술은, 특정 차량을 인식하는 핵심기술이다. 이와 관련한 기존 연구들은 큰 차종으로만 분류하거나, 분류 가능한 차종의 수, 정확도 등이 낮아 실용성 및 신뢰성이 떨어진다는 단점이 있다. 따라서, 본 논문에서는 차종을 정확하게 분류할 수 있는 2단계 차종 분류 알고리즘을 제안한다. 제안 시스템은 CNN으로 학습된 모델을 기반으로 1차로 차량의 유형을 분류하고, 2차로 정확한 차종을 분류한다. 실험 결과, 52개의 차종을 분류함에 있어 단일 분류 모델에 비해 5.3%p 더 높은 90.2%의 분류 정확도를 보였다. 이를 통해, 더욱 정확한 차종 분류가 가능하다.