• Title/Summary/Keyword: 학습 횟수

Search Result 253, Processing Time 0.031 seconds

Design and Implementation of Network Courseware based Internet (인터넷 기반의 코스웨어의 설계 및 구현)

  • Choi, Jin-Seung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05a
    • /
    • pp.305-307
    • /
    • 2010
  • 컴퓨터 기술의 발달과 인터넷의 보급으로 청소년의 인터넷 사용횟수가 급속히 증가하고, 그에 따른 역기능이 사회문제가 되는 시점에서, 사이버 문화를 조성하고 사이버상의 역기능을 감소시키기 위한 정보통신윤리 교육프로그램이 필요하다. 컴퓨터 활용에 있어 역기능에 대한 문제는 청소년 자신이 가장 정확하게 파악하고 있으므로, 가장 효율적인 해결방안을 제시할 수 있는 대상도 청소년이다. 따라서 정보통신윤리를 향상시킬 수 있는 학습자료를 개발하고 학교 교육 과정에 적용이 가능한 웹 사이트 형태의 네티켓 코스웨어를 개발하여 적용하고자 한다.

  • PDF

Disease Recognition on Medical Images Using Neural Network (신경회로망에 의한 의료영상 질환인식)

  • Lee, Jun-Haeng;Lee, Heung-Man;Kim, Tae-Sik;Lee, Sang-Bock
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.1
    • /
    • pp.29-39
    • /
    • 2009
  • In this paper has proposed to the recognition of the disease on medical images using neural network. The neural network is constructed as three-layers of the input-layer, the hidden-layer and the output-layer. The training method applied for the recognition of disease region is adaptive error back-propagation. The low-frequency region analyzed by DWT are expressed by matrix. The coefficient-values of the characteristic polynomial applied are n+1. The normalized maximum value +1 and minimum value -1 in the range of tangent-sigmoid transfer function are applied to be use as the input vector of the neural network. To prove the validity of the proposed methods used in the experiment with a simulation experiment, the input medical image recognition rate the evaluation of areas of disease. As a result of the experiment, the characteristic polynomial coefficient of low-frequency area matrix, conversed to 4 level DWT, was proved to be optimum to be applied to the feature parameter. As for the number of training, it was marked fewest in 0.01 of learning coefficient and 0.95 of momentum, when the adaptive error back-propagation was learned by inputting standardized feature parameter into organized neural network. As to the training result when the learning coefficient was 0.01, and momentum was 0.95, it was 100% recognized in fifty-five times of the stomach image, fifty-five times of the chest image, forty-six times of the CT image, fifty-five times of ultrasonogram, and one hundred fifty-seven times of angiogram.

  • PDF

Ranking Methods of Web Search using Genetic Algorithm (유전자 알고리즘을 이용한 웹 검색 랭킹방법)

  • Jung, Yong-Gyu;Han, Song-Yi
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.91-95
    • /
    • 2010
  • Using artificial neural network to use a search preference based on the user's information, the ranking of search results that will enable flexible searches can be improved. After trained in several different queries by other users in the past, the actual search results in order to better reflect the use of artificial neural networks to neural network learning. In order to change the weights constantly moving backward in the network to change weights of backpropagation algorithm. In this study, however, the initial training, performance data, look for increasing the number of lessons that can be overfitted. In this paper, we have optimized a lot of objects that have a strong advantage to apply genetic algorithms to the relevant page of the search rankings flexible as an object to the URL list on a random selection method is proposed for the study.

Design of the Call Admission Control System of the ATM Networks Using the Fuzzy Neural Networks (퍼지 신경망을 이용한 ATM망의 호 수락 제어 시스템의 설계)

  • Yoo, Jae-Taek;Kim, Choon-Seop;Kim, Yong-Woo;Kim, Young-Han;Lee, Kwang-Hyung
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.8
    • /
    • pp.2070-2079
    • /
    • 1997
  • In this paper, we proposed the FNCAC (fuzzy neural call admission control) scheme of the ATM networks which used the benefits of fuzzy logic controller and the learning abilities of the neural network to solve the call admission control problems. The new call in ATM networks is connected if QoS(quality of service) of the current calls is not affected due to the connection of a new call. The neural network CAC(call admission control) system is predictable system because the neural network is able to learn by the input/output pattern. We applied the fuzzy inference on the learning rate and momentum constant for improving the learning speed of the fuzzy neural network. The excellence of the proposed algorithm was verified using measurement of learning numbers in the traditional neural network method and fuzzy neural network method by simulation. We found that the learning speed of the FNCAC based on the fuzzy learning rules is 5 times faster than that of the CAC method based on the traditional neural network theory.

  • PDF

Prediction of pollution loads in Geum River using machine learning (기계학습을 이용한 금강유역 옥천의 오염부하량 예측)

  • Lim, Heesung;An, Hyunuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.445-445
    • /
    • 2018
  • 기후변화에 따른 환경오염은 21세기 인류에게 가장 심각한 문제 중의 하나로 대두되고 있다. 환경적인 측면에서 하천오염은 경제적으로 많은 문제를 발생시키고 있다. 이러한 하천오염 문제를 해결하기 위해서는 오염물질의 농도 측적 및 데이터 축적이 필수적이라 할 수 있다. 그러나 일반적으로 오염물질 부하량에 대한 직접적인 측정은 비용 측면에서 쉽지 않은 것이 사실이다. 또한 실시간으로 BOD, COD, TN, TP 등의 자료를 이용하여 예측하는 것에는 자료의 부족성으로 인해 한계가 있다. 본 연구에서는 구글의 딥러닝 오픈소스 라이브러리인 텐서플로우를 활용하여 기계학습을 통한 하천오염 예측을 목적으로 하고 있다. 기계학습을 위하여 텐서플로우를 활용하여 RNN, LSTM 인공신경망 모형을 구축하였다. 하천오염의 학습과 예측을 위해 결과치 분석을 위한 자료로는 금강 유역에 위치한 옥천 관측소 충청북도 옥천군 이원면 이원대교에 위치한 $36^{\circ}14'31.0''N$ $127^{\circ}40'02.6''E$의 관측소에서 BOD, COD, DO, 부유물질의 자료를 사용하였다. 모형의 학습을 위해서 입력자료는 수위, 유량, 평균기온, 평균풍속 자료를 2004년 ~ 2017년까지의 14년간의 자료를 사용하였다. 연구를 위해 BOD, COD, DO 부유물질 자료는 물환경정보시스템(http://water.nier.go.kr/)의 자료를 활용하고 수위, 유량등의 자료는 국가수자원관리종합정보시스템 (http://www.wamis.go.kr/)의 자료를 사용하였다. 그러나 수온, 수위, 풍속등의 자료는 일 자료가 있는가 반면 BOD, COD, TN, TP등의 자료는 일 자료가 있지 않아 이를 원활히 활용할 수 있도록 예측을 위한 결과치의 선형보간법을 통해 일 자료를 획득한 후 연구를 하였다. RNN, LSTM의 분석 시 학습속도, 반복시행횟수 sequence length의 길이 등의 값을 조절 하면서 결과치를 분석하였다.

  • PDF

Q-Learning Policy and Reward Design for Efficient Path Selection (효율적인 경로 선택을 위한 Q-Learning 정책 및 보상 설계)

  • Yong, Sung-Jung;Park, Hyo-Gyeong;You, Yeon-Hwi;Moon, Il-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.2
    • /
    • pp.72-77
    • /
    • 2022
  • Among the techniques of reinforcement learning, Q-Learning means learning optimal policies by learning Q functions that perform actionsin a given state and predict future efficient expectations. Q-Learning is widely used as a basic algorithm for reinforcement learning. In this paper, we studied the effectiveness of selecting and learning efficient paths by designing policies and rewards based on Q-Learning. In addition, the results of the existing algorithm and punishment compensation policy and the proposed punishment reinforcement policy were compared by applying the same number of times of learning to the 8x8 grid environment of the Frozen Lake game. Through this comparison, it was analyzed that the Q-Learning punishment reinforcement policy proposed in this paper can significantly increase the learning speed compared to the application of conventional algorithms.

블로그 검색을 위한 태그 기반 피드 포스트 랭킹 알고리즘

  • Han, Seung-Gyun;Lee, Sang-Jin;Park, Jong-Heon
    • 한국경영정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.623-628
    • /
    • 2007
  • 본 논문은 Web 2.0시대의 새로운 컨텐츠 매체로 각광받고 있는 블로그와 관련하여 태그 기반의 검색 알고리즘을 제안하고자 한다. 최근 블로그 검색과 관련하여 태그 기반의 블로그 검색 서비스가 등장하기 시작했지만, 현재 제공되는 태그 기반의 검색 서비스는 태그의 유무와 컨텐트의 최신성을 주요 기준으로 삼고, 태그와 컨텐트 간의 관련성을 제대로 고려하지 않아 검색 결과가 만존스럽지 못하는 경우가 많다. 따라서 본 논문에서는 태그와 컨텐트와의 관련성을 실수화하고 이를 주요 기준으로 검색 결과의 순위를 결정하는 PTRank 알고리즘을 제안하였다. PTRank 알고리즘에서는 1) 태그가 피드의 제목에 포함되었는지 여부, 2) 태그가 피드의 설명에 나타나는 회수, 3) 태그가 아이템의 제목에 포함되었는지 여부, 4) 태그가 아이템의 설명에 나타나는 횟수, 5) 피드 내에서 태그의 IDF값, 6) 사용자의 검색 행위를 이용해 태그와 컨텐트간의 관련성을 실수화하였다. 실험 결과, PTRank 모델 및 학습 알고리즘이 태그 기반의 피드 검색에서 잘 작동하며 검색에 효과적으로 활용될 수 있다는 것을 알 수 있었다.

  • PDF

Enhanced SOM Algorithm by Using Frequency Number of Winner Node (승자 노드의 빈도 수를 이용한 개선된 SOM 알고리즘)

  • 이준행;김재용;김광백
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.268-271
    • /
    • 2003
  • SOM 알고리즘에서 가중치 조정은 입력 벡터와 승자 노드의 대표 벡터간의 차이만큼 조정되고 승노드의 대표벡터에 입력벡터의 정보를 반영하게 된다. 여기서 그 정보를 반영할 때 입력벡터와 승자노드의 대표 벡터간에 차이가 크면 승자 노드의 대표 벡터에 입력벡터를 기억시키기 위해 입력 벡터의 정보를 더 많이 반영해야 한다. 이러한 문제점을 개선하기 위해 본 논문에서는 승자 노드의 대표벡터와 입력벡터간의 출력오류를 0과1사이의 정규화된 값으로 출력오류를 계산하여 학습률을 조정하고 승자 노드의 저 활용 문제를 개선하기 위해 학습 중에 각 승자 노드의 대표 벡터들이 수정되고 선택되어지는 횟수가 가능한 동등해지도록 각 노드의 승자 빈도수를 가중치 조정에 반영하는 개선된 SOM 알고리즘을 제안하였다. 제안된 방법의 인식 성능을 평가하기 위해 주민등록증에서 추출한 숫자 패턴 50개를 대상으로 실험한 결과, 제안된 방법의 인식 성능이 기존의 SOM 알고리즘보다 개선된 것을 확인하였다.

  • PDF

AQ-NAV: Reinforced Learning Based Channel Access Method Using Distance Estimation in Underwater Communication (AQ-NAV: 수중통신에서 거리 추정을 이용한 강화 학습 기반 채널 접속 기법)

  • Park, Seok-Hyeon;Shin, Kyungseop;Jo, Ohyun
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.7
    • /
    • pp.33-40
    • /
    • 2020
  • This work tackles the problem of conventional reinforcement learning scheme which has a relatively long training time to reduce energy consumption in underwater network. The enhanced scheme adjusts the learning range of reinforcement learning based on distance estimation. It can be reduce the scope of learning. To take account the fact that the distance estimation may not be accurate due to the underwater wireless network characteristics. this research added noise in consideration of the underwater environment. In simulation result, the proposed AQ-NAV scheme has completed learning much faster than existing method. AQ-NAV can finish the training process within less than 40 episodes. But the existing method requires more than 120 episodes. The result show that learning is possible with fewer attempts than the previous one. If AQ-NAV will be applied in Underwater Networks, It will affect energy efficiency. and It will be expected to relieved existing problem and increase network efficiency.

Automatic Interpretation of Epileptogenic Zones in F-18-FDG Brain PET using Artificial Neural Network (인공신경회로망을 이용한 F-18-FDG 뇌 PET의 간질원인병소 자동해석)

  • 이재성;김석기;이명철;박광석;이동수
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.455-468
    • /
    • 1998
  • For the objective interpretation of cerebral metabolic patterns in epilepsy patients, we developed computer-aided classifier using artificial neural network. We studied interictal brain FDG PET scans of 257 epilepsy patients who were diagnosed as normal(n=64), L TLE (n=112), or R TLE (n=81) by visual interpretation. Automatically segmented volume of interest (VOI) was used to reliably extract the features representing patterns of cerebral metabolism. All images were spatially normalized to MNI standard PET template and smoothed with 16mm FWHM Gaussian kernel using SPM96. Mean count in cerebral region was normalized. The VOls for 34 cerebral regions were previously defined on the standard template and 17 different counts of mirrored regions to hemispheric midline were extracted from spatially normalized images. A three-layer feed-forward error back-propagation neural network classifier with 7 input nodes and 3 output nodes was used. The network was trained to interpret metabolic patterns and produce identical diagnoses with those of expert viewers. The performance of the neural network was optimized by testing with 5~40 nodes in hidden layer. Randomly selected 40 images from each group were used to train the network and the remainders were used to test the learned network. The optimized neural network gave a maximum agreement rate of 80.3% with expert viewers. It used 20 hidden nodes and was trained for 1508 epochs. Also, neural network gave agreement rates of 75~80% with 10 or 30 nodes in hidden layer. We conclude that artificial neural network performed as well as human experts and could be potentially useful as clinical decision support tool for the localization of epileptogenic zones.

  • PDF