• Title/Summary/Keyword: 학습 파라미터

Search Result 510, Processing Time 0.027 seconds

Optimization of the Parameter of Neuro-Fuzzy system using Particle Swarm Optimization (PSO를 이용한 뉴로-퍼지 시스템의 파라미터 최적화)

  • Kim Seung-Seok;Kim Yong-Tae;Kim Ju-Sik;Jeon Byeong-Seok
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.168-171
    • /
    • 2006
  • 본 논문에서는 Particle Swarm Optimization 기법을 이용한 뉴로-퍼지 시스템의 파라미터 동정을 실시한다. PSO의 학습 및 군집 특성을 이용하여 시스템을 학습한다. 유전 알고리즘과 같은 무작위 탐색법을 이용하며 하나의 해 군집에 대해 다수 객체들이 탐색하는 기법을 통하여 최적해 부분의 탐색성능을 높여 전체 모델의 학습성능을 개선하고자 한다. 제안된 기법의 유용성을 시뮬레이션을 통하여 보이고자 한다.

  • PDF

A Light-weight Model Based on Duplicate Max-pooling for Image Classification (Duplicate Max-pooling 기반 이미지 분류 경량 모델)

  • Kim, Sanghoon;Kim, Wonjun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.152-153
    • /
    • 2021
  • 고성능 딥러닝 모델은 학습과 추론 과정에서 고비용의 전산 자원과 많은 연산량을 필요로 하여 이에 따른 개발 환경과 많은 학습 시간을 필요로 하여 개발 지연과 한계가 발생한다. 따라서 HW 또는 SW 개선을 통해 파라미터 수, 학습 시간, 추론시간, 요구 메모리를 줄이는 연구가 지속 되어 왔다. 본 논문은 EfficientNet에서 사용된 Linear Bottleneck을 변경하여 정확도는 소폭 감소 하지만 기존 모델의 파라미터를 55%로 줄이는 경량화 모델을 제안한다.

  • PDF

Independent Component Analysis of Fixed Point Algorithm by Using Learning Parameters (학습파라미터를 이용한 고정점 알고리즘의 독립성분분석)

  • 조용현;민성재;오정은;김아람;전윤희
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.138-141
    • /
    • 2003
  • 본 연구에서는 뉴우턴법의 고정점 알고리즘에 학습파라미터를 추가한 새로운 고정점 알고리즘의 신경망 기반 독립성분분석기법을 제안하였다. 이는 목적함수의 1차 미분을 이용하는 뉴우턴법에서 역혼합행렬의 경신을 빠르게 하기 위함이고, 모멘트는 접선을 구하는 과정에서 함수의 기울기변화에 따른 발진을 줄여 좀 더욱 더 빠른 학습을 하기 위함이다. 제안된 기법을 512×512 픽셀의 5개 영상으로부터 임의의 혼합행렬에 따라 발생되는 영상들을 각각 대상으로 시뮬레이션 한 결과, 기존의 고정점 알고리즘은 학습파리미터에 영향을 받으며, 적절한 파라미터값의 설정(학습율 1, 모멘트 0.0001)은 보다 우수한 분리성능과 빠른 분리속도를 얻을 수 있음을 확인하였다.

  • PDF

A Study on Machine Learning Model for Predicting Uncollected Parameters in Indoor Environment Evaluation (실내 환경 평가 시 미확보 파라미터 예측을 위한 기계학습 모델에 대한 연구)

  • Jeong, Jin-Hyoung;Jo, Jae-Hyun;Kim, Seung-Hun;Bang, So-Hyeon;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.5
    • /
    • pp.413-420
    • /
    • 2021
  • This study is about a machine learning model for predicting insufficient parameters through other parameters when one of the collected parameters is insufficient. A regression model was created to predict time, temperature, humidity, CO2, and light quantity data through the machine learning regression analysis function in Matlab. In addition, the three models with the lowest RMSE values for each parameter were selected and verified. For verification, the predicted values were obtained by applying the test data to the prediction model derived from each parameter, and the correlation coefficient and error average between the measured values and the obtained predicted values were obtained and then compared.

Language Models constructed by Iterative Learning and Variation of the Acoustical Parameters (음향학적 파라미터의 변화 및 반복학습으로 작성한 언어모델에 대한 고찰)

  • Oh Se-Jin;Hwang Cheol-Jun;Kim Bum-Koog;Jung Ho-Youl;Chung Hyun-Yeol
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.35-38
    • /
    • 2000
  • 본 연구에서는 연속음성인식 시스템의 성능 향상을 위한 기초 연구로서 시스템에 적합한 음향모델과 언어모델을 작성하고 항공편 예약 태스크를 대상으로 인식실험을 실시한 결과 그 유효성을 확인하였다. 이를 위하여 먼저 HMM의 출력확률분포의 mixture와 파라미터의 차원에 대한 정확한 분석을 통한 음향모델을 작성하였다. 또한 반복학습법으로 특정 태스크를 대상으로 N-gram 언어모델을 적용하여 인식 시스템에 적합한 모델을 작성하였다. 인식실험에 있어서는 3인의 화자가 발성한 200문장에 대해 파라미터 차원 및 mixture의 변화에 따른 음향모델과 반복학습에 의해 작성한 언어모델에 대해 multi-pass 탐색 알고리즘을 이용하였다. 그 결과, 25차원에 대한 mixture 수가 9인 음향모델과 10회 반복 학습한 언어모델을 이용한 경우 평균 $81.0\%$의 인식률을 얻었으며, 38차원에 대한 mixture 수가 9인 음향모델과 10회 반복 학습한 언어모델을 이용한 경우 평균 $90.2\%$의 인식률을 보여 인식률 제고를 위해서는 38차원에 대한 mixture 수가 9인 음향모델과 10회 반복학습으로 작성한 언어모델을 이용한 경우가 매우 효과적임을 알 수 있었다.

  • PDF

Parameter Estimation in Debris Flow Deposition Model Using Pseudo Sample Neural Network (의사 샘플 신경망을 이용한 토석류 퇴적 모델의 파라미터 추정)

  • Heo, Gyeongyong;Lee, Chang-Woo;Park, Choong-Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.11
    • /
    • pp.11-18
    • /
    • 2012
  • Debris flow deposition model is a model to predict affected areas by debris flow and random walk model (RWM) was used to build the model. Although the model was proved to be effective in the prediction of affected areas, the model has several free parameters decided experimentally. There are several well-known methods to estimate parameters, however, they cannot be applied directly to the debris flow problem due to the small size of training data. In this paper, a modified neural network, called pseudo sample neural network (PSNN), was proposed to overcome the sample size problem. In the training phase, PSNN uses pseudo samples, which are generated using the existing samples. The pseudo samples smooth the solution space and reduce the probability of falling into a local optimum. As a result, PSNN can estimate parameter more robustly than traditional neural networks do. All of these can be proved through the experiments using artificial and real data sets.

Implementation of Speech Recognizer using Relevance Vector Machine (RVM을 이용한 음성인식기의 구현)

  • Kim, Chang-Keun;Koh, Si-Young;Hur, Kang-In;Lee, Kwang-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.8
    • /
    • pp.1596-1603
    • /
    • 2007
  • In this paper, we experimented by three kind of method for feature parameter, training method and recognition algorithm of most suitable for speech recognition system and considered. We decided speech recognition system of most suitable through two kind of experiment after we make speech recognizer. First, we did an experiment about three kind of feature parameter to evaluate recognition performance of it in speech recognizer using existent MFCC and MFCC new feature parameter that change characteristic space using PCA and ICA. Second, we experimented recognition performance or HMM, SVM and RVM by studying data number. By an experiment until now, feature parameter by ICA showed performance improvement of average 1.5% than MFCC by high linear discrimination from characteristic space. RVM showed performance improvement of maximum 3.25% than HMM in an experiment by decrease of studying data. As such result, effective method for speech recognition system to propose in this paper derives feature parameters using ICA and un recognition using RVM.

Microcontroller-based Gesture Recognition using 1D CNN (1D CNN을 이용한 마이크로컨트롤러기반 제스처 인식)

  • Kim, Ji-Hye;Choi, Kwon-Taeg
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.219-220
    • /
    • 2021
  • 본 논문에서는 마이크로컨트롤러에서 6축 IMU 센서를 사용한 제스쳐를 인식하기 위한 최적화된 학습 방법을 제안한다. 6축 센서값을 119번 샘플링할 경우 특징 차원이 매우 크기 때문에 다층 신경망을 이용할 경우 학습파라미터가 마이크로컨트롤러의 메모리 허용량을 초과하게 된다. 본 논문은 성능은 유지하며 학습 파라미터 개수를 효과적으로 줄이기 위한 마이크로컨트롤러에 최적화된 1D CNN을 제안한다.

  • PDF

Deep Prompt Tuning based Machine Comprehension on Korean Question Answering (Deep Prompt Tuning 기반 한국어 질의응답 기계 독해)

  • Juhyeong Kim;Sang-Woo Kang
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.269-274
    • /
    • 2023
  • 질의응답 (Question Answering)은 주어진 질문을 이해하여 그에 맞는 답변을 생성하는 자연어 처리 분야의 핵심적인 기계 독해 작업이다. 현재 대다수의 자연어 이해 작업은 사전학습 언어 모델에 미세 조정 (finetuning)하는 방식으로 학습되고, 질의응답 역시 이러한 방법으로 진행된다. 하지만 미세 조정을 통한 전이학습은 사전학습 모델의 크기가 커질수록 전이학습이 잘 이루어지지 않는다는 단점이 있다. 게다가 많은 양의 파라미터를 갱신한 후 새로운 가중치들을 저장하여야 한다는 용량의 부담이 존재한다. 본 연구는 최근 대두되는 deep prompt tuning 방법론을 한국어 추출형 질의응답에 적용하여, 미세 조정에 비해 학습시간을 단축시키고 적은 양의 파라미터를 활용하여 성능을 개선했다. 또한 한국어 추출형 질의응답에 최적의 prompt 길이를 최적화하였으며 오류 분석을 통한 정성적인 평가로 deep prompt tuning이 모델 예측에 미치는 영향을 조사하였다.

  • PDF

On Word Embedding Models and Parameters Optimized for Korean (한국어에 적합한 단어 임베딩 모델 및 파라미터 튜닝에 관한 연구)

  • Choi, Sanghyuk;Seol, Jinseok;Lee, Sang-goo
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.252-256
    • /
    • 2016
  • 본 논문에서는 한국어에 최적화된 단어 임베딩을 학습하기 위한 방법을 소개한다. 단어 임베딩이란 각 단어가 분산된 의미를 지니도록 고정된 차원의 벡터공간에 대응 시키는 방법으로, 기계번역, 개체명 인식 등 많은 자연어처리 분야에서 활용되고 있다. 본 논문에서는 한국어에 대해 최적의 성능을 낼 수 있는 학습용 말뭉치와 임베딩 모델 및 적합한 하이퍼 파라미터를 실험적으로 찾고 그 결과를 분석한다.

  • PDF