• Title/Summary/Keyword: 학습 기법

Search Result 3,684, Processing Time 0.032 seconds

Learning and Modeling of Neuro-Fuzzy modeling using Clustering and Fuzzy rules (클러스터링과 퍼지 규칙을 이용한 뉴로-퍼지 시스템 학습 및 모델링)

  • Kim, Sung-Suk;Kwak, Keun-Chang;Kim, Ju-Sik;Ryu, Jeong-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2879-2881
    • /
    • 2005
  • 본 논문에서는 뉴로-퍼지 모델의 전제부 소속함수의 새로운 학습방법을 통한 모델링 기법을 제안한다. 모델의 크기와 학습시간을 줄이는 기법으로 클러스터링 기법을 이용한 모델의 초기 파라미터 결정 방법이 있다. 이는 클러스터링 후 이들 파라미터를 다시 모델에 적용하여 모델을 학습하는 순차적 방법으로써 모델의 학습이 끝난 후의 전제부 파라미터가 클러스터링 파라미터와 연관성을 가지지 못하는 경우가 발생하였다. 또한 오차미분 기반 학습에서는 전제부 초기치가 국부적 최적해에서 벋어나지 못하는 문제점을 가지고 있다. 본 논문에서는 자율적으로 클러스터의 수를 추정하며 이들 파라미터를 최적화하며 이를 이용하여 뉴로-퍼지 모델의 학습을 실시하는 학습기법을 제안하였다. 제안된 방법에서는 기존의 오차미분 기반 학습을 클러스터링 기반 학습으로 확장하였으며 이를 이용한 모델의 성능을 기존의 연구결과와 비교하여 우수성을 보인다.

  • PDF

An Adaptive Method for Student Level Estimation in a SCORM-based e- learning System (SCORM 기반의 e-Learning 시스템에서 적응형 학습자 수준 판단기법)

  • 한향숙;정철호;문현정;김영지;우용태
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04a
    • /
    • pp.566-568
    • /
    • 2003
  • 본 논문에서는 SCORM을 기반으로 한 e-Learning 시스템에서 학습자의 학습 활동을 트래킹하여 학습자의 수준을 적응적으로 판단하는 기법을 제시하였다. 제시된 기법에서는 모집단의 크기가 작을 경우 교수자가 지정한 난이도를 이용하여 학습자의 수준을 판단하고, 모집단의 크기가 충분히 클 경우에는 문항반응이론을 적응한 난이도에 의해 학습자의 수준을 판단하였다. 문항반옹이론을 적용할 시점에서 교수자가 지정한 난이도가 문항반응이론에서 추정한 난이도와 차이가 날 경우, 교수자가 지정한 난이도를 문항반응이론의 난이도로 수정하는 적응적인 기법을 제시하였다. SCORM의 트래킹 기능을 이용하여 실험한 결과 문제를 푼 학습자의 수가 적을 경우에는 학습자 수의 변화에 따라 학습자의 수준이 계속 바뀌는 문제점이 있음을 알 수 있었다. 따라서 모집단의 크기가 작을 경우, 본 논문에서 제안한 방법에 의해 교수자가 지정한 문항의 난이도를 이용하여 학습자의 수준을 판단하는 것이 효과적이었다.

  • PDF

Performance Improvement of Regression Neural Networks by Using PCA (PCA 기법에 의한 회귀분석 신경망의 성능개선)

  • 조용현;박용수
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.06a
    • /
    • pp.116-119
    • /
    • 2001
  • 본 논문에서는 주요성분분석 기법을 도입하여 회귀분석을 위한 신경망의 성능 개선방안을 제안하였다. 이는 대용량의 입력 데이터를 통계적으로 독립인 특징들의 집합으로 변환시키는 주요성분분석 기법의 속성을 살려 학습데이터의 타원을 감소시킴으로서 고차원의 학습데이터에 따른 신경망의 학습성능 의존성을 줄이기 위함이다. 제안된 기법의 신경망을 10개의 독립변수 패턴을 가진 자동차 연비문제에 적용하여 시뮬레이션한 결과, 기존의 학습데이터를 그대로 이용하는 신경 망보다 우수한 학습성능과 회귀성능이 있음을 확인할 수 있었다.

  • PDF

Application of transfer learning to develop radar-based rainfall prediction model with GAN(Generative Adversarial Network) for multiple dam domains (다중 댐 유역에 대한 강우예측모델 개발을 위한 전이학습 기법의 적용)

  • Choi, Suyeon;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.61-61
    • /
    • 2022
  • 최근 머신러닝 기술의 발달에 따라 이를 활용한 레이더 자료기반 강우예측기법이 활발히 개발되고 있다. 기존 머신러닝을 이용한 강우예측모델 개발 관련 연구는 주로 한 지역에 대해 수행되며, 데이터 기반으로 훈련되는 머신러닝 기법의 특성상 개발된 모델이 훈련된 지역에 대해서만 좋은 성능을 보인다는 한계점이 존재한다. 이러한 한계점을 해결하기 위해 사전 훈련된 모델을 이용하여 새로운 데이터에 대해 모델을 훈련하는 전이학습 기법 (transfer learning)을 적용하여 여러 유역에 대한 강우예측모델을 개발하고자 하였다. 본 연구에서는 사전 훈련된 강우예측 모델로 생성적 적대 신경망 기반 기법(Generative Adversarial Network, GAN)을 이용한 미래 강우예측모델을 사용하였다. 해당 모델은 기상청에서 제공된 2014년~2017년 여름의 레이더 이미지 자료를 이용하여 초단기, 단기 강우예측을 수행하도록 학습시켰으며, 2018년 레이더 이미지 자료를 이용한 단기강우예측 모의에서 좋은 성능을 보였다. 본 연구에서는 훈련된 모델을 이용해 새로운 댐 유역(안동댐, 충주댐)에 대한 강우예측모델을 개발하기 위해 여러 전이학습 기법을 적용하고, 그 결과를 비교하였다. 결과를 통해 새로운 데이터로 처음부터 훈련시킨 모델보다 전이학습 기법을 사용하였을 때 좋은 성능을 보이는 것을 확인하였으며, 이를 통해 여러 댐 유역에 대한 모델 개발 시 전이학습 기법이 효율적으로 적용될 수 있음을 확인하였다.

  • PDF

Financial Application of Integrated Optimization and Machine Learning Technique (최적화와 기계학습 결합기법의 재무응용)

  • Kim, Kyoung-jae;Park, Hoyeon;Cha, Injoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.429-430
    • /
    • 2019
  • 본 논문에서는 최적화 기법에 기반한 지능형 시스템의 재무응용사례를 다룬다. 본 연구에서 제안하는 모형은 대표적인 최적화 기법 중 하나인 시뮬레이티드 어니일링인데 이는 유전자 알고리듬과 유사한 최적화 성능을 가지고 있는 것으로 알려져 있으나 재무분야에서 응용된 사례가 거의 없다. 본 연구에서 제안하는 지능형 시스템은 시뮬레이티드 어니일링과 기계학습 기법을 결합한 것이다. 일반적으로 최적화와 기계학습 기법을 결합하는 방법은 특징선택(feature selection), 특징 가중치 최적화(feature weighting), 사례선택(instance selection), 모수 최적화(parameter optimization) 등의 방법이 있는데 선행연구에서 가장 많이 사용된 것은 특징선택에 두 기법을 결합하는 방식이다. 본 연구에서도 기계학습 기법을 재무 문제에 활용함에 있어서 최적의 특징선택을 위해 시뮬레이티드 어니일링을 결합하는 방식을 사용한다. 본 연구에서 제안된 기법의 유용성을 확인하기 위하여 실제 재무분야의 데이터를 활용하여 예측 정확도를 확인하였으며 그 결과를 통하여 제안하는 모형의 유용성을 확인할 수 있었다.

  • PDF

A Study on the School Library as a Development Device of the Constructivism's Learning Method (구성주의 학습기법의 발전방안으로서의 학교도서관에 관한 연구)

  • Suh, Jin-Won
    • Journal of Korean Library and Information Science Society
    • /
    • v.38 no.4
    • /
    • pp.341-356
    • /
    • 2007
  • I purposed to identify the relationship between the constructivism and the school library in this study. This study was done on the contexts, concepts and characters of constructivism and constructivism's learning method. And also it was done on the role of school library and media specialist, especially on the information literacy education. Finally I suggested it in this study that constructivism's learning method can be completed effectively through the school library and information literacy education.

  • PDF

High-Efficiency Homomorphic Encryption Techniques for Privacy-Preserving Data Learning (프라이버시 보존 데이터 학습을 위한 고효율 동형 암호 기법)

  • Hye Yeon Shim;Yu-Ran Jeon;Il-Gu Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.419-422
    • /
    • 2024
  • 최근 인공지능 기술의 발전과 함께 기계학습과 빅데이터를 융합한 서비스가 증가하게 되었고, 무분별한 데이터 수집과 학습으로 인한 개인정보 유출 위험도가 커졌다. 따라서 프라이버시를 보호하면서 기계학습을 수행할 수 있는 기술이 중요해졌다. 동형암호 기술은 정보 주체자의 개인정보 기밀성을 유지하면서 기계학습을 할 수 있는 방법 중 하나이다. 그러나 평문 크기에 비례하여 암호문 크기와 연산 결과의 노이즈가 커지는 동형암호의 특징으로 인해 기계학습 모델의 예측 정확도가 감소하고 학습 시간이 오래 소요되는 문제가 발생한다. 본 논문에서는 부분 동형암호화된 데이터셋으로 로지스틱 회귀 모델을 학습할 수 있는 기법을 제안한다. 실험 결과에 따르면 제안하는 기법이 종래 기법보다 예측 정확도를 59.4% 향상시킬 수 있었고, 학습 소요 시간을 63.6% 개선할 수 있었다.

이미지 복원을 위한 네트워크 파라미터의 동적 업데이트를 위한 기법

  • Kim, Tae-Hyeon
    • Broadcasting and Media Magazine
    • /
    • v.25 no.2
    • /
    • pp.27-35
    • /
    • 2020
  • 최근 많은 연구 결과물에서 빅데이터를 이용하여 학습된 뉴럴 네트워크가 영상 내 노이즈를 제거하는데 매우 효과적임이 입증되었다. 여기에서 한 걸음 더 나아가, 입력으로 주어진 노이즈가 있는 영상의 특징을 분석하여, 사전에 학습된 네트워크의 파라미터를 테스트 타임에 동적으로 업데이트함으로써 주어진 입력 영상을 더욱 잘 처리할 수 있도록 하는 연구들이 시도되고 있다. 본 원고에서는 이와 같이 테스트 타임에 주어지는 입력 영상을 네트워크 학습에 사용하는(self-supervision) 이미지 복원 기법들을 소개한다. 다음으로, 기존의 self-supervision을 이용하는 기법들 대비 학습 효율성과 정확도를 더욱 향상시킬 수 있는 새로운 형태의 네트워크 파라미터 업데이트 기법을 설명하고, 제안하는 기법의 우수성을 다양한 실험 결과를 통해 분석 및 입증한다.

A Dynamic Channel Assignment Method in Cellular Networks Using Reinforcement learning Method that Combines Supervised Knowledge (감독 지식을 융합하는 강화 학습 기법을 사용하는 셀룰러 네트워크에서 동적 채널 할당 기법)

  • Kim, Sung-Wan;Chang, Hyeong-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.5
    • /
    • pp.502-506
    • /
    • 2008
  • The recently proposed "Potential-based" reinforcement learning (RL) method made it possible to combine multiple learnings and expert advices as supervised knowledge within an RL framework. The effectiveness of the approach has been established by a theoretical convergence guarantee to an optimal policy. In this paper, the potential-based RL method is applied to a dynamic channel assignment (DCA) problem in a cellular networks. It is empirically shown that the potential-based RL assigns channels more efficiently than fixed channel assignment, Maxavail, and Q-learning-based DCA, and it converges to an optimal policy more rapidly than other RL algorithms, SARSA(0) and PRQ-learning.

영상 분류를 위한 준지도 학습 기법의 분류와 동작 원리의 이해

  • Chae, Mun-Ju;Park, Jae-Hyeon;Jo, Seong-In
    • Broadcasting and Media Magazine
    • /
    • v.27 no.2
    • /
    • pp.10-18
    • /
    • 2022
  • 본 고에서는 준지도 학습의 개념과 목표 그리고 대표 기법들의 동작 원리에 대해서 알아본다. 구체적으로, 영상 분류를 위한 준지도 학습 기법을 크게 label propagation 기반 기법과 representation learning 기반 기법으로 나누고, 이 두 가지 기법들의 특성을 분석하고, 대표 기법들의 동작 원리에 대해서 설명한다. 또한, 영상 분류 문제에서 위 두 가지 접근법들의 대표 기법들의 성능을 평가한다.