• 제목/요약/키워드: 학습 객체

검색결과 766건 처리시간 0.026초

스파크 프레임워크를 위한 병렬적 k-Modes 알고리즘 (Parallel k-Modes Algorithm for Spark Framework)

  • 정재화
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권10호
    • /
    • pp.487-492
    • /
    • 2017
  • 클러스터링은 빅데이터 분석 및 데이터 마이닝 분야에서 데이터 간 유사성을 파악하기 위해 사용하는 기법으로 다양한 클러스터링 기법 중 범주적 데이터를 위해 k-Modes 알고리즘이 대표적으로 사용된다. k-Modes와 같이 반복적 연산이 집중된 작업의 속도를 향상시키기 위해 많은 관심을 받고 있는 분산 병행 프레임워크 스파크는 하둡과 달리 RDD라는 추상화 객체 개념을 사용하여 대용량의 데이터를 메모리 상에서 처리 가능한 환경을 제공한다. 스파크는 다양한 기계학습을 위한 라이브러리인 Mllib을 제공하고 있으나 연속적 데이터만 처리 가능한 k-means만 포함되어 있어 범주적 데이터 처리가 불가능한 한계가 있다. 따라서 본 논문에서는 스파크 환경에서 범주적 데이터 클러스터링을 위한 k-Modes 알고리즘을 위한 RDD 설계하고 효과적으로 동작할 수 있는 알고리즘을 구현하였다. 실험을 통해 제안한 알고리즘이 스파크 환경에서 선형적으로 증가한다는 것을 보였다.

딥러닝 기반 거리 영상의 Semantic Segmentation을 위한 Atrous Residual U-Net (Atrous Residual U-Net for Semantic Segmentation in Street Scenes based on Deep Learning)

  • 신석용;이상훈;한현호
    • 융합정보논문지
    • /
    • 제11권10호
    • /
    • pp.45-52
    • /
    • 2021
  • 본 논문에서는 U-Net 기반의 semantic segmentation 방법에서 정확도를 개선하기 위한 Atrous Residual U-Net (AR-UNet)을 제안하였다. U-Net은 의료 영상 분석, 자율주행 자동차, 원격 감지 영상 등의 분야에서 주로 사용된다. 기존 U-Net은 인코더 부분에서 컨볼루션 계층 수가 적어 추출되는 특징이 부족하다. 추출된 특징은 객체의 범주를 분류하는 데 필수적이며, 부족할 경우 분할 정확도를 저하시키는 문제를 초래한다. 따라서 이 문제를 개선하기 위해 인코더에 residual learning과 ASPP를 활용한 AR-UNet을 제안하였다. Residual learning은 특징 추출 능력을 개선하고, 연속적인 컨볼루션으로 발생하는 특징 손실과 기울기 소실 문제 방지에 효과적이다. 또한 ASPP는 특징맵의 해상도를 줄이지 않고 추가적인 특징 추출이 가능하다. 실험은 Cityscapes 데이터셋으로 AR-UNet의 효과를 검증하였다. 실험 결과는 AR-UNet이 기존 U-Net과 비교하여 향상된 분할 결과를 보였다. 이를 통해 AR-UNet은 정확도가 중요한 여러 응용 분야의 발전에 기여할 수 있다.

Study on driver's distraction research trend and deep learning based behavior recognition model

  • Han, Sangkon;Choi, Jung-In
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권11호
    • /
    • pp.173-182
    • /
    • 2021
  • 본 논문에서는 운전자의 주의산만을 유발하는 운전자, 탑승자의 동작을 분석하고 핸드폰과 관련된 운전자의 행동 10가지를 인식하였다. 먼저 주의산만을 유발하는 동작을 환경 및 요인으로 분류하고 관련 최근 논문을 분석하였다. 분석된 논문을 기반으로 주의산만을 유발하는 주요 원인인 핸드폰과 관련된 10가지 운전자의 행동을 인식하였다. 약 10만 개의 이미지 데이터를 기반으로 실험을 진행하였다. SURF를 통해 특징을 추출하고 3가지 모델(CNN, ResNet-101, 개선된 ResNet-101)로 실험하였다. 개선된 ResNet-101 모델은 CNN보다 학습 오류와 검증 오류가 8.2배, 44.6배가량 줄어들었으며 평균적인 정밀도와 f1-score는 0.98로 높은 수준을 유지하였다. 또한 CAM(class activation maps)을 활용하여 딥러닝 모델이 운전자의 주의 분산 행동을 판단할 때, 핸드폰 객체와 위치를 결정적 원인으로 활용했는지 검토하였다.

치과방사선사진과 증강현실을 활용한 방사선촬영법 숙련용 디지털 콘텐츠 개발에 대한 융복합 연구 (Convergence and integration study related to development of digital contents for radiography training using dental radiograph and augmented reality)

  • 구자영;이재기
    • 디지털융복합연구
    • /
    • 제16권12호
    • /
    • pp.441-447
    • /
    • 2018
  • 이 연구의 목적은 증강현실기술을 활용하여 치과 방사선 촬영술의 반복 연습이 가능한 디지털 콘텐츠를 개발하는데 있다. 성인 모델의 외형을 사진 촬영하고, 실습용 마네킹 팬텀을 컴퓨터 단층 촬영한 후, 이를 중첩하여 삼차원 객체를 제작하였다. 또한, 결과로 출력되는 106장의 방사선사진은 촬영법과 관련된 치아 정보를 활용하여 데이터베이스화하였고, 학습자가 성공적인 촬영을 수행하면 각 촬영조건에 맞는 부위별 영상이 호출되도록 시스템을 구축하였다. 이를 통해 임상 전 단계에서의 연습을 반복적으로 시행할 수 있었다. 이 콘텐츠를 이용하여 치과위생사의 방사선 촬영 임상 실무역량을 향상하는데 기여하고자 한다. 다만, 직접 얼굴인식을 통해 촬영하는 것이 실습효용 가치가 클 것으로 예상하기 때문에 이에 관련한 후속 연구가 필요하다.

Mask R-CNN을 이용한 항공 영상에서의 도로 균열 검출 (Crack Detection on the Road in Aerial Image using Mask R-CNN)

  • 이민혜;남광우;이창우
    • 한국산업정보학회논문지
    • /
    • 제24권3호
    • /
    • pp.23-29
    • /
    • 2019
  • 기존의 균열 검출 방법은 많은 인력과 시간, 비용이 소모되는 문제점이 있다. 이러한 문제를 해결하고자 차량이나 드론을 이용하여 취득한 영상에서 균열 정보를 파악하고 정보화하는 자동검출시스템이 요구되고 있다. 본 논문에서는 드론으로 촬영한 도로 영상에서의 균열 검출 연구를 진행한다. 획득한 항공영상은 전처리와 라벨링(Labeling) 작업을 통해 균열의 형태정보 데이터셋(data set)을 생성한다. 생성한 데이터셋을 Mask R-CNN(regions with convolution neural network) 딥러닝(deep learning) 모델에 적용하여 다양한 균열 정보가 학습된 새로운 모델을 획득하였다. 획득 모델을 이용한 실험 결과, 제시된 항공 영상에서 균열을 평균 73.5%의 정확도로 검출하였으며 특정 형태의 균열 영역도 예측하는 것을 확인할 수 있었다.

RGB-D 영상을 이용한 Fusion RetinaNet 기반 얼굴 검출 방법 (Face Detection Method based Fusion RetinaNet using RGB-D Image)

  • 남은정;남충현;장경식
    • 한국정보통신학회논문지
    • /
    • 제26권4호
    • /
    • pp.519-525
    • /
    • 2022
  • 영상 내 사람의 얼굴을 검출하는 얼굴 검출 작업은 다양한 영상 처리 어플리케이션 내 전처리 또는 핵심 과정으로 사용되고 있다. 최근 딥러닝 기술의 발달로 높은 성능을 내고 있는 신경망 모델은 2차원 영상에 의존적이며, 카메라 품질이 떨어지거나, 얼굴의 초점을 제대로 잡지 못하는 등의 영상 내 노이즈가 발생할 경우, 제대로 얼굴을 검출하지 못할 수 있다. 본 논문에서는 2차원 영상의 의존성을 낮추기 위해 깊이 정보를 함께 사용하는 얼굴 검출 방법에 대해 제안한다. 제안하는 모델은 기존 공개된 얼굴 검출 데이터 셋을 이용하여 깊이 정보를 사전에 생성 및 전처리 과정을 거친 후 학습하였으며, 그 결과, 평균 정밀도 기준 FRN 모델은 89.16%로 87.95%의 성능을 보인 RetinaNet 모델보다 약 1.2% 정도의 성능이 향상되었음을 확인하였다.

Adaptive Face Mask Detection System based on Scene Complexity Analysis

  • Kang, Jaeyong;Gwak, Jeonghwan
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권5호
    • /
    • pp.1-8
    • /
    • 2021
  • 코로나바이러스-19(COVID-19)의 대유행에 따라 전 세계 수많은 확진자가 발생하고 있으며 국민을 불안에 떨게 하고 있다. 바이러스 감염 확산을 방지하기 위해서는 마스크를 제대로 착용하는 것이 필수적이지만 몇몇 사람들은 마스크를 쓰지 않거나 제대로 착용하지 않고 있다. 본 논문에서는 영상 이미지에서의 효율적인 마스크 감지 시스템을 제안한다. 제안 방법은 우선 입력 이미지의 모든 얼굴의 영역을 YOLOv5를 사용하여 감지하고 감지된 얼굴의 수에 따라 3가지의 장면 복잡도(Simple, Moderate, Complex) 중 하나로 분류한다. 그 후 장면 복잡도에 따라 3가지 ResNet(ResNet-18, 50, 101) 중 하나를 기반으로 한 Faster-RCNN을 사용하여 얼굴 부위를 감지하고 마스크를 제대로 착용하였는지 식별한다. 공개 마스크 감지 데이터셋을 활용하여 실험한 결과 제안한 장면 복잡도 기반 적응적인 모델이 다른 모델에 비해 가장 성능이 뛰어남을 확인하였다.

사물인터넷 기반 소관리 시스템의 분석 및 설계 (Analysis and Design of Cattle Management System based on IoT)

  • 조병호
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권2호
    • /
    • pp.125-130
    • /
    • 2021
  • 축산 스마트팜의 구현이 사물인터넷 기술이 발전함에 따라 더욱 효율적으로 이루어질 수 있게 되었다. IoT 기술을 이용한 소의 질병 및 발정을 판단하여 자동적으로 소의 관리자 스마트폰으로 그 판단 결과를 푸시메지시로 알려주면 유용한 축산관리 시스템 구축이 가능해진다. 소의 질병 및 발정시기를 판단하는 방식은 온도센서 및 3축가속도 센서를 이용하여 가축의 생체데이터를 수집하여 IoT 통신과 인터넷을 이용해서 서버로 데이터를 전송하고 이 데이터는 인공지능 머신러닝 학습에 의해 이루어진다. 본 논문에서는 이와 같은 사물인터넷 기반 소관리 시스템을 구축하기 위한 전체 시스템 구조를 보여준다. 또한 객체지향방법을 이용한 사용자 요구사항 분석과 플로우차트 및 화면 설계를 보여줌으로써 이 시스템 소프트웨어를 개발하기 위한 효율적인 분석 및 설계 방법을 제시한다.

적외선영상내 전력선 검출을 위한 하이브리드 방법 (A Hybrid Method for Recognizing Existence of Power Lines in Infrared Images)

  • 김종희;정찬호
    • 전기전자학회논문지
    • /
    • 제26권4호
    • /
    • pp.742-745
    • /
    • 2022
  • 본 논문에서 우리는 열화상에서 전력선 유무를 검출하는 영상처리 기법과 딥러닝 기반의 하이브리드 방법을 제안한다. 딥러닝은 다수의 데이터로부터 목적에 부합하는 특징 벡터를 학습할 수 있는 장점 덕분에 영상 인식, 객체 검출 등 다양한 분야에서 기존의 직접 설계한 특징 벡터를 사용하는 방법들보다 높은 성능을 달성할 수 있는 장점이 있고, 영상처리 기법은 사람의 직관을 그대로 적용할 수 있다는 장점이 있다. 두 장점을 모두 이용하여 열화상에서 전력선 유무를 검출하는 방법을 제안한다. 전력선 유무 검출에 가장 적합한 영상처리 기법을 찾기 위해 총 5가지 방법을 적용 및 비교하였고, 그 결과로 제안하는 방법은 기존의 영상처리 기반 방법과 딥러닝 기반의 방법 두 가지 모두에 비해 더 높은 99.48%의 정확도로 전력선 유무를 검출할 수 있다.

딥러닝을 이용한 달 크레이터 탐지 (Lunar Crater Detection using Deep-Learning)

  • 서행자;김동영;박상민;최명진
    • 우주기술과 응용
    • /
    • 제1권1호
    • /
    • pp.49-63
    • /
    • 2021
  • 태양계 천체 탐사는 다양한 탑재체를 통해 이루어지고 있고, 그에 따라 많은 연구 결과들이 나오고 있다. 우리는 태양계 천체 연구의 한 방법으로 딥러닝 적용을 시도해 보았다. 지구 관측 위성 자료와 다르게 태양계 천체 자료들은 천체들에 따라 탐사선에 따라 각 탐사선의 탑재체에 따라 그 자료의 형태가 매우 다르다. 그래서 학습시킨 모델로 다양한 자료에 적용이 어려울 수 있지만 사람에 의한 오류를 줄이거나, 놓치는 부분들을 보완해 줄 수 있을 것이라고 기대한다. 우리는 달 표면의 크레이터를 탐지하는 모델을 구현해 보았다. Lunar Reconnaissance Orbiter Camera (LROC) 영상과 제공하는 shapefile을 입력값으로 하여 모델을 만들었고, 이를 달 표면 영상에 적용하여 보았다. 결과가 만족스럽지는 못했지만 이후 이미지 전처리와 모델 수정 작업을 통해 최종적으로는 ShadowCam에 의해 획득되는 달의 영구음영지역 영상에 적용할 예정이다. 이 외에도 달 표면과 비슷한 형태를 가진 세레스와 수성에 적용을 시도하여 딥러닝이 태양계 천체 연구에 또 다른 방법임을 시사하고자 한다.